期刊文献+

基于连通分量特征的文本检测与分割 被引量:9

Using Connected-Components' Features to Detect and Segment Text
下载PDF
导出
摘要 自然背景中的文本识别具有巨大的应用价值,但其应用却一直受到文本检测和分割技术的限制。为了更有效地进行文本检测与分割,提出了一种基于连通分量特征的自然场景中文本检测分割算法。该算法首先将原始图片通过Niblack方法分解为许多连通分量;接着,用一个级联分类器和一个SVM组成的两阶段分类模块来验证这些连通分量的文本特征。由于文本连通分量和非文本连通分量在特征上存在差异,大多数非文本会被级联分类器丢弃,而SVM则能在此结果上做进一步的验证,因此最终输出只有文本的二值图像。最后用该算法在测试数据上进行了评估实验,评估结果表明,检测精度超过90%,响应超过93%。 Text recognition in natural scenes has a promising future, but its application is limited by the technique of text detection and segmentation. To detect and segment text effectively, this paper proposes an approach for detecting and segmenting text from scene images by using Connected-Components' features. First, the image is decomposed into a list of Connected-Components(CCs) by Niblack algorithm. Then all the CCs' features are verified by 2-stage classification module which is composed by a cascade classifier and a SVM. Most of non-text CCs are filtered out by cascade classifier and the remaining CCs are further verified by SVM. The final outputs are binary images containing texts only. Experiments have been taken on lots of images, the precision is more than 90% and recall is more than 93%.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第11期1653-1656,共4页 Journal of Image and Graphics
关键词 级联分类器 两阶段分类 文本检测 文本特征 cascade classifier, 2-stage classification, text detection, text feature
  • 相关文献

参考文献8

  • 1Clark P,Mirmehdi M.Finding text regions using localized measures[A].In:Proceedings of 11th British Machine Vision Conference[C].Bristol,UK,2000:675 ~ 684. 被引量:1
  • 2Chun B T,Bae Y,Kim T Y.Automatic text extraction in digital videos using FFT and neural network[A].In:Proceedings of IEEE International Fuzzy Systems Conference[C],Seoul,Korea,1999,2:1112 ~1115. 被引量:1
  • 3Chen D,Shearer K,Bourlard H.Text enhancement with asymmetric alter for video OCR[A].In:Proceedings of International Conference on Image Analysis and Recognition[C],Venice,Italy,2001:192 ~ 197. 被引量:1
  • 4Mao W,Chung F,Lanm K,et al.Hybrid Chinese/English text detection in images and video frames[A].In:Proceedings of International Conference on Pattern Recognition[C],Quebec,Canada,2002,3:1015 ~ 1018. 被引量:1
  • 5Wang K Q,Kangas J A.Character location in scene images from digital camera[J].Pattern Recognition,2003,36 (10):2287 ~2299. 被引量:1
  • 6Kim K C,Byun H R,Song Y J,et al.Scene text extraction in natural scene images using hierarchical feature combining and verification[A].In:Proceedings of International Conference on Pattern Recognition[C],Cambridge,UK,2004,2:679 ~ 682. 被引量:1
  • 7Zhu K,Qi F,Jiang R,et al.Using adaboost to detect and segment characters from natural scenes[A].In:Proceedings of Camera Based Document Analysis and Recognition[C],Seoul,Korea,2005:52 ~ 59. 被引量:1
  • 8Winger L,Robinson J A,Jernigan M E.Low-complexity character extraction in low-contrast scene images[J].International Journal of Pattern Recognition and Artificial Intelligence,2000,14(2):113 ~135. 被引量:1

同被引文献66

  • 1唐轶峻,申小阳,朱雯兰,隋成华.基于BP神经网络的数显仪表动态字符识别系统[J].光学仪器,2005,27(6):62-66. 被引量:6
  • 2ZHU Kai-hua,QI Fei-hu,JIANG Ren-jie,XU Li.Automatic character detection and segmentation in natural scene images[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(1):63-71. 被引量:12
  • 3晋瑾,平西建,张涛,陈明贵.图像中的文本定位技术研究综述[J].计算机应用研究,2007,24(6):8-11. 被引量:17
  • 4Bernard M T, Gosselin C. Spatial and Color Spaces Combination for Natural Scene Text Extraction[C] //Proc. of 2006 International Conference on Image Processing. Atlanta, USA: [s. n.] , 2006: 985-988. 被引量:1
  • 5Ye Qixiang, Huang Qingming. A New Text Detection Algorithm in Images/Video Frames[C] //Proc. of the 5th Pacific Rim Conference on Multimedia. Tokyo, Japan: [s. n.] , 2004: 858-865. 被引量:1
  • 6Simon M. Text Locating Competition Results[C] //Proc. of the 8th International Conference on Document Analysis and Recognition. Seoul, Korea: [s. n.] , 2005: 80-84. 被引量:1
  • 7JUNG Keechul, KIM Kwang In, JAIN Anil K. Text information extraction in images and video: a survey [J]. Pattern Recognition(S0031-3203), 2004, 37(5): 977-997. 被引量:1
  • 8LIANG Jian, David Doermann, LI Hui-ping. Camera-based analysis of text and documents: a survey [J]. International Journal on DoeumentAnalysis and Recognition(S1433-2833), 2005, 7(2/3): 84-104. 被引量:1
  • 9ZHANG Jing, GOLDGOF Dmitry, KASTURI Rangachar. A New Edge-Based Text Verification Approach for Video [C]//IEEE International Conference on Pattern Recognition, Tampa, December 7-11, 2008. 被引量:1
  • 10IEEE, 2008: 1-4. CHEN Xi-lin, YANG Jie, ZHANG Jing, et al. Automatically text detection and recognition in natural scene images [J]. IEEE Transactions on Image Processing (S1057-7149), 2004, 13(1): 87-99. 被引量:1

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部