期刊文献+

Hopf分歧分析中的系统等值化简 被引量:2

System Equivalence in Hopf Bifurcation Analysis
下载PDF
导出
摘要 分歧分析是电力系统稳定分析的一个重要内容,随着系统规模的扩大,分歧分析也变得越来越困难。使分析简单容易的一个途径就是等值化简系统,开展对分歧子系统的研究。该文介绍了分歧子系统条件和几何解耦条件,当化简子系统满足这两个条件时,就能产生分歧子系统,分歧子系统也将产生与原系统相同的分歧,并保留原系统中心流形的全部必要信息,从而减少了计算,获得与原系统同样的分析结果。在分歧子系统条件和几何解耦条件的基础上,从实际电力系统物理概念出发,改进了识别Hopf分歧子系统的方法。用该方法获得的分歧子系统不仅保留了原系统的奇异非线性动态特性,且保留了电力系统稳定分析所需的基本结构和状态。算例结果验证了所提理论与改进方法的正确性。 Bifurcation analysis is already an important part of the power system stability analysis. But as the size of the power system was enlarged, bifurcation analysis is getting more and more difficult. One way to make the analysis easy is equivalent simplification for the system, to proceed research for bifurcation subsystem. The bifurcation subsystem condition and geometric decoupling condition are brought forward for simplifying bifurcation system. When the simplified subsystems satisfy the two conditions the subsystem will produce the same bifurcation as the full system and it will keep all the dynamics of the center manifold of the full system, then the same analysis results can be obtained without significant computation. With bifurcation subsystem condition and geometric decoupling condition, on the basis of power system physical concept, a modified method to identify bifurcation subsystem is also presented. The bifurcation subsystem obtained from this method not only keeps the nonlinear singular dynamics, but also keeps the fundamental structure and states that needed in power system stability analysis. The results of the example validate the theory and modified method presented.
出处 《中国电机工程学报》 EI CSCD 北大核心 2006年第22期41-45,共5页 Proceedings of the CSEE
关键词 奇异摄动 Hopf分歧了系统 中心流彤 分歧子系统条件 几何解耦条件 动态等值 singular perturbation Hopf bifurcation subsystem center manifold bifurcation subsystem condition geometric decoupling condition dynamic equivalence
  • 相关文献

参考文献20

二级参考文献75

  • 1邓集祥,张崇见,边二曼,刘德斌.灾变理论在多机电力系统暂态稳定分析中的应用[J].中国电机工程学报,1995,15(3):158-165. 被引量:7
  • 2李颖晖.运用稳定流表变换确定电力系统暂态稳定性[M].西安:西安交通大学,2000.. 被引量:1
  • 3[美]Leon Lapidue George Pinder F.科学和工程中的偏微分方程[M].北京:煤炭工业出版社,1985.. 被引量:1
  • 4Kopell N,Washburn J R B. Chaotic motion in the two degree of freedom swing equations[J]. IEEE CAS Part I,1982,29(11): 738-746. 被引量:1
  • 5Kwamy H G, FiscM R F, Nwankpa C O. Local bifurcation in power system:theory, computation and application[J]. Proceedings of the w.I~F.,1995,83(11): 1456-1483. 被引量:1
  • 6Beardmore R E. Stability and bifurcation properties of index-1 DAEs[J].Numerical Algorithms, 1998,19(1-4):43-53. 被引量:1
  • 7Kwatany H G, Pasrija A K, Bahar L Y. Static bifurcations in electric power networks: loss of steady state stability and voltage collapse[J]. IEEE Transactions on Circuits and Systems,1986,33(10): 981-991. 被引量:1
  • 8Venkatasubramanian V, Sehattler H, Zaborszky J.Dynamios of large constrained nonlinear systea taxonomy theoty[J]Procesdings of the IEEE.1995,83(11): 1530-1558. 被引量:1
  • 9Beardmore R E. The singularity induced bifurcation and its Kronecker normal form[J]. SIAM journal of Matrix Analysis,2001,23(1): 126-137. 被引量:1
  • 10Guckenheimer, Holmes P. Nonlinear oscillations, dynamical systems and bifercations of vector fields[M].Springer-Verlag,New York, 1983. 被引量:1

共引文献240

同被引文献30

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部