摘要
分歧分析是电力系统稳定分析的一个重要内容,随着系统规模的扩大,分歧分析也变得越来越困难。使分析简单容易的一个途径就是等值化简系统,开展对分歧子系统的研究。该文介绍了分歧子系统条件和几何解耦条件,当化简子系统满足这两个条件时,就能产生分歧子系统,分歧子系统也将产生与原系统相同的分歧,并保留原系统中心流形的全部必要信息,从而减少了计算,获得与原系统同样的分析结果。在分歧子系统条件和几何解耦条件的基础上,从实际电力系统物理概念出发,改进了识别Hopf分歧子系统的方法。用该方法获得的分歧子系统不仅保留了原系统的奇异非线性动态特性,且保留了电力系统稳定分析所需的基本结构和状态。算例结果验证了所提理论与改进方法的正确性。
Bifurcation analysis is already an important part of the power system stability analysis. But as the size of the power system was enlarged, bifurcation analysis is getting more and more difficult. One way to make the analysis easy is equivalent simplification for the system, to proceed research for bifurcation subsystem. The bifurcation subsystem condition and geometric decoupling condition are brought forward for simplifying bifurcation system. When the simplified subsystems satisfy the two conditions the subsystem will produce the same bifurcation as the full system and it will keep all the dynamics of the center manifold of the full system, then the same analysis results can be obtained without significant computation. With bifurcation subsystem condition and geometric decoupling condition, on the basis of power system physical concept, a modified method to identify bifurcation subsystem is also presented. The bifurcation subsystem obtained from this method not only keeps the nonlinear singular dynamics, but also keeps the fundamental structure and states that needed in power system stability analysis. The results of the example validate the theory and modified method presented.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2006年第22期41-45,共5页
Proceedings of the CSEE
关键词
奇异摄动
Hopf分歧了系统
中心流彤
分歧子系统条件
几何解耦条件
动态等值
singular perturbation
Hopf bifurcation subsystem
center manifold
bifurcation subsystem condition
geometric decoupling condition
dynamic equivalence