期刊文献+

基于灭绝机制的交互式遗传算法 被引量:6

Interactive genetic algorithm based on extinction mechanism
下载PDF
导出
摘要 针对传统交互式遗传算法的早熟收敛和用户易疲劳问题,提出灭绝机制,以减小搜索空间,提高算法性能.利用进化历史信息,辨识并灭绝劣势物种和劣势个体.利用搜索空间划分实现优胜与劣汰相互牵制.给出禁忌域与有效域中个体数目关于进化代数的公式.分析算法性能的参数敏感性.有效搜索空间的快速缩小和较小的最大进化代数估计证明了该算法有较高的性能.实验结果表明该算法的高效率.结果进一步证明了缩小了搜索空间,能有效避免早熟和减轻用户疲劳. The premature convergence and a user's fatigue are two issues in interactive genetic algorithm. The extinction mechanism is put forward, which will help to decrease the search space and enhance the algorithm's performance. The mechanism makes use of the history evolution information to identify the taboo value to extinguish the inferior species and by preventing duplicating to extinguish the inferior individuals. The mechanism also helps the rules of extinction and survival to hold down each other by means of the search space partition. To validate the proposed mechanism, the formula for the variation of individual numbers of the taboo subspace and valid subspace with the evolutionary generation are deduced, and the parameters sensitivity of the proposed mechanism's performance is also analyzed. Furthermore, the high performance of the proposed mechanism is proved by the fast shrinkage of the valid space and the shorter maximum time to converge. Finally, the efficiency of the proposed approach is shown in the comparison experiments. The results manifests that the shrinkage of search space can significantly avoid the premature and lessen a user's fatigue.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期665-670,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60304016).
关键词 交互式遗传算法 早熟收敛 用户疲劳 灭绝机制 搜索空间 interactive genetic algorithm premature convergence user's fatigue extinction mechanism searching space
  • 相关文献

参考文献16

  • 1TAKAGI H.Interactive evolutionary computation:fusion of the capabilities of EC optimization and human evolution[J].Proc of the IEEE.San Diego:2001,89(9):1275-1296. 被引量:1
  • 2KIM H S,CHO S B.Application of interactive genetic to fashion design[J].Engineering Applications of Artificial Intelligence,2000,13(6):635-644. 被引量:1
  • 3TOKUI N,IBA H.Music composition with interactive evolutionary computation[C]//Proc of the 3rd Int Conf on Generative Art.Italy:Milan Polytechnical,2000:215-226. 被引量:1
  • 4MORITA T,IBA H,ISHIZUKA M.Generating emotional voice and behavior expression by interactive evolutionary computation[C]//Proc of the 62nd Annual Meeting of Japan Society for Information Processing,Yokohama:[s.n.],2001:45-46. 被引量:1
  • 5IWASAKI T,KIMURA A,TODOROKI Y,et al.Interactive virtual aquarium[C]//Proc of the 5th Annual Conf of the Virtual Reality Society of Japan.Gifu:[s.n.],2000:141-144. 被引量:1
  • 6李敏强..遗传算法的基本理论及其在知识发现中的应用研究[D].天津大学,2000:
  • 7王正志,薄涛著..进化计算[M].长沙:国防科技大学出版社,2000:474.
  • 8DE JONG,K A.An analysis of the behavior of a class of genetic adaptive systems[D].Michigan,USA:University of Michigan,1975. 被引量:1
  • 9WHITLEY D,MATHIAS K,FITZHORN P.Delta coding:an interactive search strategy for genetic algorithms[C]//Proc of 4th lnt Conf on Genetic Algorithm.Los Altos:Morgan Kaufman,1991:77-84. 被引量:1
  • 10MICHALEWICZ Z.Genetic Algorithms+Data Structure = Evolutionary Programs[M].2nd Edition.Heidelberg,Berlin:SpringVerlag,1994. 被引量:1

二级参考文献16

  • 1蒋珊珊,曹先彬,王煦法.基于IGA的用户Agent模型与设计[J].模式识别与人工智能,2004,17(2):244-249. 被引量:9
  • 2Iwasaki T, Kimura A, Todoroki Y, et al. Interactive virtual aquarium [C]. Gifu: Proceedings of the 5th Annual Conference of the Virtual Reality Society of Japan, 2000. 141-144. 被引量:1
  • 3Ohsaki M, Takagi H, Ohya K. An input method using discrete fitness values for interactive GA [J].Intelligence Fuzzy System, 1998,6(6) : 131-145. 被引量:1
  • 4Takagi H, Unemi T, Terano T. Perspective on interactive evolutionary computing [J]. Artificial Intelligence, 1998,13(5) :692-703. 被引量:1
  • 5Takagi H, Ohya K, Ohsaki M. Improvement of input interface for interactive genetic algorithms and its evaluation [C]. Zukav: Methodologies for the Conception, Design, and Application of Intelligent Systems proceedings, 1996.490-493. 被引量:1
  • 6Takagi H. Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evolution [C]. San Diegot Proceedings of the IEEE, 2001. 1275-1296. 被引量:1
  • 7Kim H S, Cho S B. Application of interactive genetic to fashion design [J]. Engineering Applications of Artificial Intelligence, 2000,13(6) : 635-644. 被引量:1
  • 8Tokui N, Iba H, Music composition with interactive evolutionary eomputation[C]. Milan: Proceedings of the 3rd International Conference on Generative Art,2000. 215-226. 被引量:1
  • 9Morita T, Iba H, Ishizuka M. Generating emotional voice and behavior expression by interactive evolutionary computation [ C ]. Yokohama:Proceedings of the 62nd Annual Meeting of Japan Society for Information Processing, 2001.45-46. 被引量:1
  • 10Takagi H. Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evolution[J]. Proc of the IEEE, 2001,89 (9) :1275-1296. 被引量:1

共引文献28

同被引文献44

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部