期刊文献+

MODIFIED NEWTON'S ALGORITHM FOR COMPUTING THE GROUP INVERSES OF SINGULAR TOEPLITZ MATRICES 被引量:1

MODIFIED NEWTON'S ALGORITHM FOR COMPUTING THE GROUP INVERSES OF SINGULAR TOEPLITZ MATRICES
原文传递
导出
摘要 Newton's iteration is modified for the computation of the group inverses of singular Toeplitz matrices. At each iteration, the iteration matrix is approximated by a matrix with a low displacement rank. Because of the displacement structure of the iteration matrix, the matrix-vector multiplication involved in Newton's iteration can be done efficiently. We show that the convergence of the modified Newton iteration is still very fast. Numerical results are presented to demonstrate the fast convergence of the proposed method. Newton's iteration is modified for the computation of the group inverses of singular Toeplitz matrices. At each iteration, the iteration matrix is approximated by a matrix with a low displacement rank. Because of the displacement structure of the iteration matrix, the matrix-vector multiplication involved in Newton's iteration can be done efficiently. We show that the convergence of the modified Newton iteration is still very fast. Numerical results are presented to demonstrate the fast convergence of the proposed method.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2006年第5期647-656,共10页 计算数学(英文)
基金 Research supported in part by the National Natural Science Foundation of China under grant 10471027 and Shanghai Education Committee, RGC 7046/03P, 7035/04P, 7045/05P and HKBU FRGs.The authors would like to thank the referees for their useful suggestions.
关键词 Newton's iteration Group inverse Toeplitz matrix Displacement rank. Newton's iteration, Group inverse, Toeplitz matrix, Displacement rank.
  • 相关文献

参考文献20

  • 1A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, John Wiley,New York, 1974; 2nd Edition, Springer-Verlag, New York, 2003. 被引量:1
  • 2D. Bini, G. Codevico and M. Van Barel, Solving Toeplitz least squares problems by means of Newton's iteration, Numer. Algorithms, 33 (2003), 93-103. 被引量:1
  • 3D. Bini and B. Meini, Approximate displacement rank and applications, in Structured Matrices in Mathematics, Computer Science and Engineering Ⅱ, V. Olshevsky Editor, Contemporary Mathematics 281, pp. 215-232, American Mathematical Society, Rhode Island, 2001. 被引量:1
  • 4S.L. Campbell and C.D. Meyer, Generalized Inverses of Linear Transformations, London, Pitman,1979; Dover, New York, 1991. 被引量:1
  • 5X. Chen and R. Hartwig, The hyperpower iteration revisited, Linear Algebra Appl, 233 (1996),207-229. 被引量:1
  • 6G. Codevico, V. Pan, M. Van Barel, X. Wang and A. Zheng, Newton-like Iteration for General and Structured Matrices, preprint, 2003. 被引量:1
  • 7H. Dial, Y. Wei and S. Qiao, Displacement rank of the Drazin inverse, J. Comput Appl. Math,167 (2004), 147-161. 被引量:1
  • 8G. Heinig and F. Hellinger, Displacement structure of pseudoinverses, Linear Algebra Appl,197/198 (1994), 623-649. 被引量:1
  • 9G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Birkhauser Verlag, Berlin, 1984. 被引量:1
  • 10T. Kailath, S.Y. Kung and M. Morf, Displacement rank of matrices and linear equations, J. Math.Anal. Appl, 68 (1979), 395-407. 被引量:1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部