期刊文献+

RESEARCH ON FACE RECOGNITION BASED ON IMED AND 2DPCA 被引量:1

RESEARCH ON FACE RECOGNITION BASED ON IMED AND 2DPCA
下载PDF
导出
摘要 This letter proposes an effective method for recognizing face images by combining two-Dimen- sional Principal Component Analysis (2DPCA) with IMage Euclidean Distance (IMED) method. The proposed method is comprised of four main stages. The first stage uses the wavelet decomposition to extract low fre- quency subimages from original face images and omits the other three subimages. The second stage concerns the application of IMED to face images. In the third stage, 2DPCA is employed to extract the face features from the processed results in the second stage. Finally, Support Vector Machine (SVM) is applied to classify the extracted face features. Experimental results on the AR face image database show that the proposed method yields better recognition performance in comparison with the 2DPCA method that is not combined with IMED. This letter proposes an effective method for recognizing face images by combining two-Dimensional Principal Component Analysis (2DPCA) with IMage Euclidean Distance (IMED) method. The proposed method is comprised of four main stages. The first stage uses the wavelet decomposition to extract low frequency subimages from original face images and omits the other three subimages. The second stage concerns the application of IMED to face images. In the third stage, 2DPCA is employed to extract the face features from the processed results in the second stage. Finally, Support Vector Machine (SVM) is applied to classify the extracted face features. Experimental results on the AR face image database show that the proposed method yields better recognition performance in comparison with the 2DPCA method that is not combined with IMED.
出处 《Journal of Electronics(China)》 2006年第5期786-790,共5页 电子科学学刊(英文版)
关键词 Face recognition Feature extraction Image processing Pattern recognition 面容识别 特征萃取 图像加工 模式识别
  • 相关文献

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部