期刊文献+

运用现代数学理论和计算机智能技术优选压裂井层

A NEW METHOD TO CHOOSE THE CANDIDATE WELLS FOR FRACTURING BY USING MODERN MATHEMATICS THEORY AND COMPUTER INTELLIGENCE
下载PDF
导出
摘要 油气井压裂后要获得好的增产效果,首先要选取最适合进行增产措施改造的井。影响一口井压裂效果的参数包括地质静态、开发动态及压裂施工等多方面参数,从理论上讲,每一个参数对压裂效果都有不同程度的影响。传统的选井方法主要依靠经验或生产需求来选择施工井层,具有一定的主观性、盲目性和风险性。本文充分运用现代数学理论,即模糊聚类、模糊神经分类系统和模糊排序法,筛选了可靠的数据,确定了压裂选井主要影响因素;深入研究了影响压裂成功率的主要因素并应用层次分析法确定各因素的权重,研究了各候选井压裂成功率的大小;同时,充分运用计算机智能技术,提出了改进的自适应遗传算法,将该遗传算法与神经网络结合起来,形成了改进的遗传神经网络,该网络收敛快、泛化能力强,克服了传统数学方法在处理这类问题时的局限性和误差大的缺点,可以用来优选压裂井。应用效果表明,该方法预测结果与现场实施压裂后的增产效果非常吻合。 To obtain expected fracturing treatment results,the most important thing is to select appropriate stimulation candidates. However, there are many parameters influence postfracture response, such as static geology parameters, dynamic development parameters and fracturing design parameters. In theory, every parameter has different effect on postfracture response. The traditional methods of selecting the candidates which depend on experience or production demands,possess definite subjectivity and great risk. The article selects reliable data from the database to determine the primary factors that affect the candidate selection by using modern mathematics theory. The primary factors that affect the success ratio of fracturing have been researched and the weights of every factor have been decided by using the layer analytical method, at the same time, the fracturing success ratio of the candidate wells have been researched. The paper puts forward advanced autoadapted genetic algorithm and combines the genetic algorithm with the neural network to form improved genetic neural network by using the computer intelligent technology. The genetic neural network has high convergent speed and strong generalization ability, and it can overcome the limitations and great declination of traditional mathematical methods. The case study shows that the predicted result of the method is very close to the actual increasing production effect after fracturing.
出处 《钻采工艺》 CAS 北大核心 2006年第6期53-55,共3页 Drilling & Production Technology
基金 国家技术研究发展计划"863计划"(863-306-ZT04-03-3)成果的一部分。
关键词 压裂 选井 遗传算法 人工神经网络 fracturing, well choosing, genetic algorithm, artificial neural networks
  • 相关文献

参考文献7

二级参考文献15

  • 1刘育骥 耿新宇 等.石油工程模糊数学[M].成都:成都科技出版社,1994.. 被引量:31
  • 2易得生 郭萍.灰色理论与方法[M].石油工业出版社,1992.. 被引量:8
  • 3[2]刘育骥,耿新宇,肖辞源.石油工程模糊数学.四川成都:成都科技大学出版社,1994 被引量:1
  • 4主新纯 李彤 王秀臣.压裂系统工程[M].北京:石油工业出版社,2002.. 被引量:1
  • 5刘育骥,耿新宇,肖辞源.石油工程模糊数学.成都:成都科技大学出版社,1994 被引量:1
  • 6王新纯,李彤,王秀臣.压裂系统工程.北京:石油工业出版社,2002 被引量:1
  • 7区栾勤,张先迪.模糊数学原理及应用.成都:成都电讯工程学院出版社,1998 被引量:1
  • 8肖芳淳,张效羽,张鹏等.模糊分析设计在石油工业中的应用.北京:石油工业出版社,1993 被引量:1
  • 9Shahab Mohaghegh et al. Development of an intelligent systems approach for restimulation candidate selection.SPE 59767 被引量:1
  • 10区栾勤,张先迪.模糊数学原理及应用[M].成都:成都电讯工程学院出版社,1998.87~90 被引量:3

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部