期刊文献+

基于光谱特性的高光谱图像压缩方案 被引量:6

The Hyper-Spectral Image Compression Scheme Based on Spectral Character
下载PDF
导出
摘要 根据干涉型高光谱成像仪成像特点,提出了一种针对干涉型光谱仪所获得高光谱图像的基于光谱特性的图像压缩方案。由于光谱信息最终从“点”干涉图像中恢复,因此方案中首先通过高精度匹配技术将原始“像面”干涉图像序列“重组”成“点”干涉图像,然后针对“点”干涉图像序列进行压缩。在重组过程中采取基于光流的亚像素级匹配和基于梯度的三角插值算法,实现了高精度的图像匹配重组;在压缩环节利用“点”干涉图像与光谱信息之间的傅立叶变换关系,提出一种能够很好保持频谱特性的基于一维DCT的压缩算法。实验证明,压缩算法总体性能远高于针对“像面”干涉图序列的压缩算法,很好地控制了光谱信息的失真。 Regarding the characteristics and the imaging mechanism of LASIS (Large aperture static imaging spectrometry), a new compression scheme of intcrferential hypcr-spectral images based on spectral character is proposed. There arc two key techniques in the scheme: the first is a new matching algorithm based on optical flow which is applied to implement high precision matching of intefferential hype-spectral image; the second is a novel compression algorithm based on 1D-DCT which is proposed to compress "POINT" interferential image directly. According to the features of original intefferential image cube produced by LASIS, the image cube is regrouped as "POINT" interferential image sequences firstly. Due to the relatiionship of Fourier transform between the spectral information and "POINT" interferential image, one dimensional DCT is used to remove the redundancy for each row of "POINT" interferential image. A high efficient entropy coding method combined Run-length with context-based arithmetic coder is realized to compress the quantized DCT coeffieients. The experimental results show that the scheme proposed in this paper can compress hyper-spectral images efficiently and it is much better than the method which compresses interferential image directly at the aspect of preserving the spectral information.
出处 《宇航学报》 EI CAS CSCD 北大核心 2006年第5期1023-1028,共6页 Journal of Astronautics
基金 863-708基金支持项目(2004AA782031)
关键词 高光谱图像 图像匹配 图像压缩 DCT 下涉成像光谱仪 Hyper-spectral image Image matching Image compression DCT Interferential spectrometry
  • 相关文献

参考文献7

二级参考文献16

  • 1近藤文雄.透镜设计技巧[M].西安:西安交通大学出版社,.105-125. 被引量:1
  • 2王之江,光学设计理论基础,1965年,107页 被引量:1
  • 3近藤文雄,透镜设计技巧,105页 被引量:1
  • 4Memon N D, Sayood K, Magliveras S. Lossless Compression of Multispectral Image Data [ J]. IEEE Trans. on Geosci. & Remote Sensing, 1994, 32(2): 282-289. 被引量:1
  • 5Wang J, Zhang K, Tang S. Spectral and Spatial Decorrelation of Landsat-TM Data for Lossless Compression [ J]. IEEE Trans. on Geosci. & Remote Sensing, 1995, 33(5): 1277-1285. 被引量:1
  • 6Rao A, Bhargava S. Multispectral Data Compression Using Bidirectional Interband Prediction [ J ]. IEEE Trans. on Geosci. &Remote Sensing, 1996, 34 (2): 385-397. 被引量:1
  • 7Wu X, Memon N. Context-based Lossless Interband Compression-Extending CALIC [ J]. IEEE Trans. on Image Processing,2000, 9(6): 994-1001. 被引量:1
  • 8Li X, Orchard M T. Edge-directed Prediction for Lossless Compression of Natural Images [ J]. IEEE Trans. on Image Processing, 2001, 10(6): 813-817. 被引量:1
  • 9Witten I H, Neal R M, Cleary J G. Arithmetic Coding for Data Compression [J]. Commun. ACM. , 1987, 30(6): 520-540. 被引量:1
  • 10Jerome M Shapiro. Embedded image coding using zerotrees of wavelet coefficients[J]. IEEE Transactions on Signal Processing,1993,41(12): 3445-3462. 被引量:1

共引文献17

同被引文献59

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部