期刊文献+

一类混沌系统非线性广义同步 被引量:2

A class of generalized synchronization of chaotic systems
下载PDF
导出
摘要 研究了Gensio系统平衡点的稳定性、分岔的动力学行为;得到了平衡点稳定性和系统分岔的判别条件.继而研究了混沌广义同步问题,提出了一种新的非线性的广义同步方法,丰富了非线性广义同步.该方法通过适当选取辅助矩阵简化了控制项,并且实现了一大类广义同步;用Gensio系统和R igidbody线性反馈系统验证了该方法的有效性.数值仿真的结果表明,驱动系统和响应系统是快速而单调地达到广义同步的.由于此类非线性广义同步的特点,其在保密通信中将会有较为广泛的应用. The Gensio system's fixed point and its bifurcation behavior are studied, and the criteria of the stability of the fixed point and the system's bifurcation are achieved. A new method of realizing nonlinear synchronization is proposed,which enrichs the nonlinear generalized synchronization. With this method, a great number of nonlinear generalized synchronization is realized. By the proper choice of the auxiliary matrix the control items are simplified. Finally, the effectiveness of the method is certified by the Gensio system and the Rigidbody linear black system. The numerical simulation shows that the driving system and the responding system can realize the generalized synchronization quickly and monotonically. According to the characteristics of the nonlinear generalized synchronization, it may find wide use in the secure communication.
机构地区 江苏大学理学院
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2006年第6期560-562,共3页 Journal of Jiangsu University:Natural Science Edition
基金 国家博士后基金资助项目(2003033498)
关键词 非线性广义同步 HOPF分岔 稳定性 Gensio系统 Rigidbody线性反馈系统 nonlinear generalized synchronization Hopf bifurcation stability Gensio system Rigidbody linear feedback system
  • 相关文献

参考文献5

二级参考文献23

  • 1LORIA A,PANTELEY E,NIJMEIJER H.Control of the chaotic doffing equation with uncertainty in all parameters[J].IEEE Transactions On Circuits and Systems I,1998,45:1225—1252. 被引量:1
  • 2ZHANG Huai-zhou,QIN Hua-shu.Adaptive control of chaotic systems with uncertainties[J].Int J Bifurcation and Chaos,1998,8(10):2041—2046. 被引量:1
  • 3LEIPNIK R B,NEWTON T A.Double strange attractors in rigid body motion with linear feedback control[J].Physics Letters A,1981,86A(2):63—67. 被引量:1
  • 4HENDRIK Richter.Controlling chaotic systems with multiple strange attractors[J].Physics Letters A,2002,300:182-188. 被引量:1
  • 5Tang D Y,Phys Rev A,1998年,57卷,5期,5247页 被引量:1
  • 6Yang S S,Chaos Solitons Fractals,1998年,9卷,10期,1703页 被引量:1
  • 7Pecora,L M,Carroll T L.Synchronization in chaotic systems[J].Phys Rev Lett,1990,64:821. 被引量:1
  • 8Lorenz E N.Deterministic non-periodic flow[J].J Atmos Sci,1963,20:130-141. 被引量:1
  • 9Rulkov N E,Sushchik M M,Tsimring L S,et al.Generalized synchronization of chaos in directionally coupled chaotic system[J].Phys Rev E,1995,51:980. 被引量:1
  • 10T Yang,L O Chua.Generalized synchronization of chaos vialinear transformations[J].International Journal of Bifurcation and Chaos,1999,9:215. 被引量:1

共引文献8

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部