期刊文献+

基于独立源分析的过程监测及故障诊断方法 被引量:3

Process Monitoring and Fault Diagnosis Based on Independent Component Analysis Method
下载PDF
导出
摘要 多元统计过程控制(MSPC)要求观测数据服从正态分布,而实际的工业过程数据大都不满足正态分布条件。独立源分析(ICA)是近几年才发展起来的一种新的统计方法,可以克服对数据分布的依赖。为此以ICA算法为核心,引入一种新型的过程监测及故障诊断方法。应用ICA提取独立源,利用I2图,Ie2图和SPE图进行故障检测,将变量重构图用于诊断故障。以三水箱系统为背景进行的实验研究,验证了该方法的有效性。 Multivariate statistical process control (MSPC) is based upon the assumption that the observed data must be subject to normal probability distribution, which sometimes can not be satisfied. Independent component analysis (ICA) is a recently developed method, which can overcome the need of the data distribution. A new method was introduced for process monitoring and fault diagnosis based on ICA. ICA was used to extract the independent components, and Ⅰ^2, Ie^2and SPE charts were used for fault detection, and Variables contribution plots were considered for fault diagnosis. At last, the simulation results of three-tank system reveal this method is very effective.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第11期3220-3223,共4页 Journal of System Simulation
基金 国家自然科学基金"基于多变量统计技术的间歇过程在线监测及故障诊断方法的研究"60374003。
关键词 独立源分析(ICA) 过程监测 故障检测 故障诊断 independent component analysis (ICA) process monitoring fault detection fault diagnosis
  • 相关文献

参考文献12

  • 1Detection with Independent Component Analysis and Support Vector Data Description[C]//Proc.of the 1999 IEEE Signal Processing Society workshop.Piscataway,NJ,USA,1999:67-76. 被引量:1
  • 2Jutten C,Herault J.Independent Component Analysis Versus PCA[C]// Proceedings of EUSIPCO-88.Fourth European Signal Processing Conference.Amsterdam,Netherlands,1988:643-646. 被引量:1
  • 3Comon P.Independent Component Analysis-A New Concept[J].Signal Processing (S0165-1684),1994,36(3):287-314. 被引量:1
  • 4Hyv(a)rinen A.Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J].IEEE Transactions on Neural Networks (S1045-9227),1999,10(3):622-634. 被引量:1
  • 5Y M Cheung,L Xu.An Empirical Method to Select Dominant Independent Components in ICA Time Series Analysis[C]//Proceedings of International Conference on Neural Networks,Washington,DC,USA,1999:3883-3887. 被引量:1
  • 6R F Li,X Z Wang.Dimension Reduction of Process Dynamic Trends Using Independent Component Analysis[J].Comput.Chem.Eng.(S0098-1354),2002,26(3):467-473. 被引量:1
  • 7A D Back,A S Weigend.A First Application of Independent Component Analysis to Extracting Structure from Stock Returns[J].Int.J.Neural Sys.(S0129-0657),1997,8(4):473-484. 被引量:1
  • 8J-F Cardoso,A Soulomica.Blind Beamforming for non-Gaussian signals[J].IEE Proceedings,Part F:Radar and Signal Processing (S0956-375X),1993,140(6):362-370. 被引量:1
  • 9Y M Cheung,L Xu.Independent component ordering in ICA time series analysis[J].Neurocomputing (S0925-2312),2001,41(10):145-152. 被引量:1
  • 10B W Silverman.Density Estimation for Statistics and Data Analysis[M].UK:Chapman & Hall,1986. 被引量:1

同被引文献17

  • 1张建明,林亚平,吴宏斌,杨格兰.独立成分分析的研究进展[J].系统仿真学报,2006,18(4):992-997. 被引量:31
  • 2Jong-Min Lee, ChangKyoo Yoo, In-Beum Lee. Statistical monitoring of dynamic processes based on dynamic independent component analysis. [J]. Chemical Engineering Science (S0009-2509), 2004, 59: 2995-3006. 被引量:1
  • 3Alok Sharma, Kuldip K Paliwal, Subspace independent component analysis using vector kurtosis [J]. Pattern Recognition (S0031-3203), 2006, 39: 2227-2232. 被引量:1
  • 4Wenfu Ku, Robert H. Storer, Christos Georgakis. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems (S0169-7439), 1995, 30: 179-196. 被引量:1
  • 5Jin Wang, S. Joe Qin. A new subspace identification approach based on principal component analysis [J]. Journal of Process Control (S0959-1524), 2002, 12: 841-855. 被引量:1
  • 6Aapo Hyvarinen. Fast and robust fixed point algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks (S1045-9227), 1999, 8(3): 622-634. 被引量:1
  • 7Bach F R,Jordan M I.Kernel independent compo- nent analysis [J].Journal of Machine Learning Re-search,2002(3):1-48. 被引量:1
  • 8Yu Jie.A nonlinear kernel gaussian mixture model based inferential monitoring approach for fault detec tion and diagnosis of chemical processes[J].Chemical Engineering Science,2012,68 (1) ..506-519. 被引量:1
  • 9Jia Ming-xing,Xu Heng-yuan,Liu Xiao-fei,et al.The optimization of the kind and parameters of kernel function in KPCA for process monitoring[J].Com- puters & Chemical Engineering,2011,46 (15) ..94- 104. 被引量:1
  • 10Zhang Ying-wei.Enhanced statistical analysis of non- linear processes using KPCA,KICA and SVM[J].Chemical Engineering Science,2009,64 ( 5 ) : 801- 811. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部