期刊文献+

H.Alzer函数单调性的证明与性质 被引量:1

On a Poof Monotonicity of H.Alzer Functions and Property
原文传递
导出
摘要 利用H.A lzer不等式nn+1<1n∑ni=1ir1n+1∑n+1i=1ir1r<1,证明了H.A lzer函数的单调性,并得到了它的一些基本性质. In the paper, a Proof monotonicity of Alzer functions is given, as will as several property is given about it.
作者 王明建 胡博
出处 《数学的实践与认识》 CSCD 北大核心 2006年第10期243-246,共4页 Mathematics in Practice and Theory
基金 河南省"十五"教育科学规划重点课题(2003-JKCHA-163)
关键词 H.Alzer不等式 幂平均 单调递减 H. Alzer's inequality power mean monotone decreasing
  • 相关文献

参考文献7

  • 1陈超平,祁锋.关于Alzer不等式的注记[J].数学的实践与认识,2005,35(9):155-158. 被引量:1
  • 2Minc H, Sathre L. Some inequalities invoing (r!)(r! )^1/r[J]. Proc Edinburgh Math Soc, 1964/65, (14) : 41-46. 被引量:1
  • 3Alzer H. On an inequality of H. Minc and L. Sathre[J]. Math Anal Appl, 1993, 9(179) : 396-402. 被引量:1
  • 4Martins J S. Arithmetic and geometricmeans. An application to Lorentz sequence spaces[J]. Math Nachr, 1988.(139) : 281-288. 被引量:1
  • 5Ume J S. An elementary proof of Alzer's inequality[J]. Math Japon, 1996. (3) : 521-522. 被引量:1
  • 6Sandor J. On an inequality of Alzer[J]. J Math Anal Appl, 1995, (192):1034-1035. 被引量:1
  • 7Chen Chan-ping, Qi Feng. Notes on proofs of Alzer's inequality[J]. Octogon Mathematical Magazine, 2003. (1) :29-33. 被引量:1

二级参考文献6

  • 1Minc H, Sathre L. Some inequalities involving (r1)1/r [J]. Proc Edinburgh Math Soc, 1964/65, (14): 41-46. 被引量:1
  • 2Alzer H. On an inequality of H. Minc and L. Sathre[J]. J Math Anal Appl, 1993, (179): 396-402. 被引量:1
  • 3Martins J S. Arithmetic and geometric means, an application to Lorentz sequence spaces[J]. Math Nachr, 1988,(139): 281-288. 被引量:1
  • 4Ume J S. An elementary proof of H. Alzer's inequality[J]. Math Japon, 1996, (3): 521-522. 被引量:1
  • 5Sándor J. On an inequality of Alzer[J]. J Math Anal Appl, 1995, (192): 1034-1035. 被引量:1
  • 6Chen Chao-ping, Qi Feng. Notes on proofs of Alzer's inequality[J]. Octogon Mathematical Magazine, 2003, (1):29-33. 被引量:1

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部