期刊文献+

定数截尾试验下两参数Weibull分布尺度参数的最优稳健Bayes估计 被引量:1

The Optimal Robust Bayes Estimation of Scale-Parameter for the Two-parameter Weibull Distribution under the Type-Ⅱ Censoring Life Test
原文传递
导出
摘要 以Г-后验期望损失作为标准,研究了定数截尾试验下两参数W e ibu ll分布尺度参数θ的最优稳健Bayes估计问题.假设尺度参数θ的先验分布在分布族Г上变化,形状参数β已知时,在0-1损失下,得到了θ的最优稳健区间估计,在均方损失下得到θ的最优稳健点估计及区间估计;β未知时,得到了θ的最优稳健点估计及区间估计.最后给出了数值例子,说明了方法的有效性. The problems of the Optimal robust Bayes estimation of Scale-Parameter for the Two-parameter Weibull distribution under the Type- Ⅱ censoring Life Test are discussed using the Г-posterior expected loss as the criterion. It is assumed that the prior distribution of ScaleParameter θ is in a conjugate prior class. When the shape-parameter ,β is known, the optimal robust interval of θ is obtained under the 0-1 loss function and the optimal robust point estimation and interval of θ are obtained under the squared error loss function. Also, we consider tbe optimal robust point estimation and interval of θ when ,β is unknown. At last, examples are given, wbich indicate that the method is effective.
出处 《数学的实践与认识》 CSCD 北大核心 2006年第10期154-160,共7页 Mathematics in Practice and Theory
关键词 最优稳健Bayes估计 Г-后验期望损失 定数截尾试验 两参数WEIBULL分布 optimal robust hayes estimation Г-posterior expected loss type- Ⅱcensoring life test two-parameter weibull distribution
  • 相关文献

参考文献5

二级参考文献1

共引文献10

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部