期刊文献+

基于特征规整和评分规整的说话人确认研究 被引量:3

Research on Feature and Score Normalization for Speaker Verification
下载PDF
导出
摘要 在说话人确认系统中,训练和测试的声学环境不匹配将造成性能急剧下降。本文提出了从特征规整和评分规整两个方面进行补偿的方法。首先,改进了基于分段的倒谱均值方差规整(SCMVN)方法,将倒谱系数都规整到相同的段内高斯统计分布,以提高不同环境条件下特征匹配程度;其次,针对由于不同说话人和不同测试环境引起的输出评分分布变化,提出了两阶段的评分规整方法,即先零规整再测试规整(TZnorm)和先测试规整再零规整(ZTnorm)两种得分变换方法,使得失配条件下与说话人无关的决策门限更加鲁棒。基于NIST2002说话人识别评测库上的实验表明,采用SCMVN的特征规整和ZTnorm的评分规整方法能够明显地提高系统性能。与采用倒谱均值减和零规整的基线系统相比,等错误率和最小检测代价分别降低了20.3%和18.1%。 In speaker verification, the performance will be significantly deteriorated due to the mismatches between the training and testing acoustic conditions. In this paper, two compensation approaches based on feature normalization and score normalization are presented, respectively. Firstly, segment-based cepstrum mean and variance normalization (SCMVN) is modified to normalize the cepstral coefficients with the similar segmental Gaussian distribution to improve the matching degree in different environmental conditions. Secondly, in order to cope with the score variability among the speakers and test utterances, two-stage score normalization techniques, i. e. Test-dependent zero-score normalization (TZnorm) and Zero-dependent test-score normalization (ZTnorm), are presented to transform the output scores and make the speaker-independent decision threshold more robust under adverse conditions. Experiments on the NIST 2002 speaker recognition evaluation (SRE) corpus show that SCMVN and ZTnorm yield better performance. Compared to the baseline system using CMS and zero normalization, 20. 3% relative improvement in EER and 18. 1% in the minimal DCF are obtained from the combination of both techniques.
出处 《中文信息学报》 CSCD 北大核心 2006年第6期75-82,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60475014)
关键词 计算机应用 中文信息处理 说话人确认 特征规整 评分规整 NIST说话人评测 computer application Chinese information processing speaker verification feature normalization score normalization NIST speaker evaluation
  • 相关文献

参考文献15

  • 1Campbell,J.P.Speaker recognition:a tutorial[J].Proc.IEEE,1997; Vol.85:1437-1462. 被引量:1
  • 2Hermansky,H.,Morgan,N.RASTA processing of speech[J].IEEE Trans.on Speech and Audio Processing,1994; Vol.2:578-589. 被引量:1
  • 3Viikki,O.,Laurila,K.Cepstral domain segmental feature vector normalization for noise robust speech recognition[J].Speech Communication,1998; Vol.25:133-147. 被引量:1
  • 4Segura,J.C.,Benítez,C.et al.Cepstral domain segmental nonlinear feature transformations for robust speech recognition[J].IEEE Signal Processing Letters,2004; Vol.11:517-520. 被引量:1
  • 5Pelecanos,J.,Sridharan,S.Feature warping for robust speaker verification[A].In:Proc.Speaker Odyssey.2001[C]; 213-218. 被引量:1
  • 6Rosenberg,A.E.,Delong,J.et al.The use of cohort normalized scores for speaker verification[A].In:Proc.ICSLP 1992[C]; Vol.2:599-602. 被引量:1
  • 7Reynolds,D.A.Comparison of background normalization methods for text-independent speaker verification[A].In:Proc.EuroSpeech 1997[C]; 963-966. 被引量:1
  • 8Auckenthaler,R.,Carey,M.,Lloyd-Thomas,H.Score normalization for text-independent speaker verification systems[J].Digital Signal Processing,2000; Vol.10:42-54. 被引量:1
  • 9Reynolds,D.A.,Quatieri,T.F.,Dunn,R.B.Speaker verification using adapted gaussian mixture models[J].Digital Signal Processing,2000; Vol.10:19-41. 被引量:1
  • 10陈雁翔,戴蓓倩,周曦,李辉.基于对话语音的与文本无关的说话人确认系统的研究[J].中文信息学报,2004,18(2):36-43. 被引量:4

共引文献3

同被引文献22

  • 1刘明辉,陈继旭,戴蓓蒨,李辉.基于TZ Normalization规整的话者确认阈值选取[J].数据采集与处理,2005,20(3):311-317. 被引量:3
  • 2陈继旭,刘明辉,戴蓓蒨,李辉.文本无关说话人确认中的一种新的评分规整方法[J].信号处理,2006,22(4):545-549. 被引量:1
  • 3Dijona P D,Asmaa E H,Gerard Chollet.Text-independent speaker verification state of the art and challenges[J].LNCS,2007,135-169. 被引量:1
  • 4Sturim D E,Reynolds D A.Speaker adaptive cohort selective for Tnorm in text-independent speaker verification[J].ICASSP,2005,1:741 -744. 被引量:1
  • 5Daniel R C,Julian F A,Joaquin G R.Speaker verification using speaker-and test-dependent fast score normalization[J].Pattern Recognition Letters,2007,28:90-98. 被引量:1
  • 6Auckenthaler R,Carey M,Lloyd-Tomas H.Score normalization for text-independent speaker verification systems[J].Digital Signal Process,2000,10:42 -54. 被引量:1
  • 7Reynolds D A,Quatieri T F.Speaker verification using adapted Gaussian Mixture Models[J].Digital Signal Process,2000,10:19 -41. 被引量:1
  • 8Thilo Stadelmann,Bernd Freisleben.Fast and robust speaker clustering using the earth mover' s distance and mixmax madeh[J].ICASSP,2006,1:989-992. 被引量:1
  • 9Rubner Y,Tomasi C,Guibas L J.The earth mover' s distance as a metric for image retrieval[J].International Journal of Computer Vision,2000,40:99-121. 被引量:1
  • 10姜洪臣,郑榕,张树武,徐波基于SDC特征和GMM-UBM模型的自动语种识别[J].文信息学报,2007,(01):49-53. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部