摘要
拟线性退化抛物方程来自于反应扩散等许多物理问题,有着深刻的应用背景.本文利用Young测度的概念和Div- Curl引理证明了在0≤U0(x)∈L2(R)∩Lp(R)和f是真正非线性函数的条件下,存在一Lp熵解.
The Quasilinear degenerate parabolic equation {δtu+δxf(u)=δxxA(u)-u^p,(x,t)∈R+^2=R×(0,+∞),u(x,0)=u0(x),x∈R comes from reaction diffusion etc physics problems, its applied background is very profound. The paper proves that there is a entropy solution provided that and f is a genuinely nonlinear function. Young measure and Div-Curl Lemma act as important roles in our proof.
出处
《应用数学学报》
CSCD
北大核心
2006年第5期912-920,共9页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10571144)
福建省自然科学基金(Z0511039)
福建省青年创新基金(2005J037)资助项目.