期刊文献+

具动力边界条件的半线性Kirchhoff方程整体解的不存在性(英文)

Nonexistence of Global Solutions to Semi-linear Kirchhoff Equation with Dynamic Boundary Conditions
下载PDF
导出
摘要 利用凸性方法得到了具动力边界条件的半线性Kirchhoff方程整体解的不存在性. In this paper, the nonexistence of global solutions to a semi-linear Kirchhoff equation with dynamic boundary conditions is considered. The method of proof relies on an argument of concavity.
出处 《应用泛函分析学报》 CSCD 2006年第3期193-196,共4页 Acta Analysis Functionalis Applicata
基金 Supported by National Science Foundation of China(10371111) Science Foundation of Henan Provience and Foundation of Zhengzhou Institute of Technology
关键词 KIRCHHOFF方程 整体解的不存在性 动力边界条件 凸性方法 Kirchhoff ectuation nonexistence of global solutions dynamic boundary conditions concavity method
  • 相关文献

参考文献10

  • 1Langese J E.Boundary Stabilization of Thin Plates[M].SIAM,Philadelphia,PA,1989. 被引量:1
  • 2Horn M A.Exact controllability of the Euler-Bernoulli plate via bending moments only on the space of optimal regularity[J].Math Anal Appl,1992,167:557-581. 被引量:1
  • 3Lasiecka I.Exponential decay rates for the solutions of Euler-Bernoulli equations with boundary dissipation occurring in the moments only[J].Differential Equations,1992,95:169-182. 被引量:1
  • 4Horn M A,Lasiecka I.Asymptotic behavior with respect to thickness of boundary stabilizing feedback for the Kirchhoff plate[J].Differential Equations,1994,114:396-433. 被引量:1
  • 5Ji G,Lasiecka I.Nonlinear boundary feedback stabilization for a semilinear Kirchhoff plate with dissipation acting only via moments-limiting bebavior[J].J Math Anal Appl,1999,229:452-479. 被引量:1
  • 6Ji G.Uniformdecay rates and asymptotic analysis of the von-Karman plate with nonlinear dissipation in the boundary moments[J].Nonlinear Analysis,2000,42:835-870. 被引量:1
  • 7Avalos G,Lasiecka I.Uniform Decays in Nonlinear Thermoelastic Systems[M].W.W.Hager and P.M.Pardalos,Optimal Control:Theory,Algorithms and Applications.Kluwer Academic Publishers,1998. 被引量:1
  • 8Avalos G.Exact controllability of a thermoelastic system with control in the thermal component only[J].Diff Integ Equations,2000,13:613-630. 被引量:1
  • 9Maksudov F G,Aliey F A.On a problem for a nonlinear hyperbolic equation of higher order with dissipation on the boundary of the domain[J].Soviet Math Dokl,1992,44:771-774. 被引量:1
  • 10Kalantarov V K,Ladyzhenskaya O A.The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type[J].J of Soviet Math,1978,10:53-70. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部