摘要
在分析研究区的水文地质特征和地下水污染情况的基础上,用模糊数学方法进行地下水水质评价.用趋势面分析和Kriging方法模拟地下水中污染物的空间分布.用灰色系统方法和对流-弥散方程的特征有限元解模拟地下水中污染物随时间的分布并且进行污染的预测.对各种方法的特点和应用条件进行了分析.表明用数学模拟方法进行地下水污染的定量研究是可行的.
Based on analytical results on hydrogeological feature and the situation of groundwater contamination, several mathematic methods were adopted to evaluate fracture-karst water quality and to simulate the distribution of contaminants in the groundwater.A fuzzy mathematical method,was applied to evaluate fracture-karst water quality in Boshan City. Geostatistical methods including Kriging analysis and trend analysis,were employed to simulate contaminants distribution in aquifer.Grey system method was adopted to forecast SO-4 ̄(2-) concentrations in representative wells. Characteristic finite element solution of adjective-dispersive equation was used for modeling contaminants distribution in groundwater and predicting groundwater contamination in the future- The characteristics and applicable condition of each mathematic method are discussed as well.
出处
《环境科学学报》
CAS
CSSCI
CSCD
北大核心
1996年第1期2-12,共11页
Acta Scientiae Circumstantiae
基金
国家自然科学基金
关键词
裂隙岩溶水
地下水
数学模型
水污染
山东博山
fracture-karst water.groundwater contamination, contaminants, mathematic simulation , Kriging analysis, grey system.