期刊文献+

引入树脂吸附促进酵母细胞不对称还原芳香酮 被引量:6

Improving asymmetric reduction of aryl ketone catalyzed by yeast cell with resin adsorption
下载PDF
导出
摘要 以酵母细胞不对称还原苯乙酮合成S-α-苯乙醇为模型反应,研究了酵母细胞催化芳香酮的不对称还原情况.首先考察了底物和产物对细胞的毒性情况及对反应的不利影响;再在此基础上研究通过引入树脂吸附控制底物和产物浓度以避免较高浓度底物和产物对细胞的毒性,进而提高反应时-空产率.实验发现苯乙酮和α-苯乙醇对酵母细胞活性具有显著的毒害,抑制反应的活性;引入树脂吸附可显著促进反应的进行,使用杭州争光树脂厂的ZG3#树脂可获得最好的效果;当使用适量的树脂时底物初始浓度即使提高到70mmoL·L-1还可以获得较好的产物收率,这比未引入树脂吸附时的底物浓度提高了近1倍. Optically active aryl alcohols are one kind of the most important chiral building blocks for many single enantiomer pharmaceuticals. Asymmetric reduction of corresponding prochiral ketone to chiral alcohol by active yeast cells is one of the most promising routes, but the space-time productivity is very low due to the toxicity of the substrate and product to the cell, which prohibits the reaction from proceeding at a high substrate concentration. The toxicity of aryl ketone to yeast cell and increasing the initial substrate concentration by introducing macropore adsorbing resin to avoid the toxicity to the cell was studied, when asymmetric reduction of acetophenone (ACP) to chiral a-phenylethyl alcohol (PEA) by Saccharomyces cerevisiae was chosen as the model reaction. The experiments showed that the substrate and product did have obvious toxicity to yeast cell. This reaction could be remarkably improved with introducing the appropriate kind of resin. The initial ACP concentration could be increased to 70 mmol · L^-1 when the appropriate amount of resin was used.
出处 《化工学报》 EI CAS CSCD 北大核心 2006年第10期2388-2392,共5页 CIESC Journal
基金 国家自然科学基金项目(20276065) 武汉科技大学基金项目(2005XY15).~~
关键词 不对称还原 手性醇 S-α-苯乙醇 树脂吸附 酵母细胞 asymmetric reduction chiral alcohol S-a-phenylethyl alcohol resin adsorptionSaccharomyces cerevisiae
  • 相关文献

参考文献16

  • 1Hutt A J,Tan S C.Drug chirality and its clinical significance.Drugs,1996,52(sup.5):1-12 被引量:1
  • 2Shimizu S,Kataoka M,Kita K.Chiral alcohol synthesis with yeast carbonyl reductases.J.Mol.Catal.B:Enzym.,1998,5(1-4):321-325 被引量:1
  • 3Rosen T,Heathcock C H.Total synthesis of(+)-compactin.J.Am.Chem.Soc.,1985,107(12):3731-3733 被引量:1
  • 4Srebnik M,Ramachandran P V,Brown H C.Chiral synthesis via organoboranes.18.Selective reductions.43.Diisopinocampheylchloroborane as an excellent chiral reducing reagent for the synthesis of halo alcohols of high enantiomeric purity.A highly enantioselective synthesis of both optical isomers of Tomoxetine,Fluoxetine,and Nisoxetine.J.Org.Chem.,1988,53(13):2916-2920 被引量:1
  • 5张毅立,廖建,陈代谟,孙洪涛.苯乙醇胺类药物的不对称合成[J].化学研究与应用,1999,11(5):480-483. 被引量:10
  • 6McCoy M.Biocatalysis grows for drug synthesis.Chem.Eng.News,1999,77(1):10-13 被引量:1
  • 7Servi S.Baker's yeast as a reagent in organic synthesis.Synthesis,1990(1):1-25 被引量:1
  • 8杨忠华,邹少兰,梅乐和,关怡新,林东强,姚善泾.面包酵母在催化不对称合成中的应用[J].化学通报,2004,67(6):425-432. 被引量:8
  • 9Rozzell J D.Commercial scale biocatalysis:myths and realities.Bioorg.Med.Chem.,1999,7(10):2253-2261 被引量:1
  • 10Yang Z H,Yao S J,Guan Y X.A complex process of asymmetric synthesis of β-hydroxy ester by baker's yeast accompanied by resin adsorption.Ind.Eng.Chem.Res.,2005,44(15):5411-5416 被引量:1

二级参考文献22

  • 1Hett R,Tetrahedron Lett,1997年,38卷,7期,1125页 被引量:1
  • 2Hong Y P,Tetrahedron Lett,1994年,35卷,31期,5551页 被引量:1
  • 3Gu J X,Tetrahedron,1993年,49卷,26期,5805页 被引量:1
  • 4Rouhi A M.Chem Eng News,2003,81(18):45 被引量:1
  • 5Servi S.Synthesis,1990,(1/2):1 被引量:1
  • 6Yang F,Russell A J.Biotechnol Progr,1993,9(3):234 被引量:1
  • 7Marino J P,McClure M S,Holub D P,Comasseto J V,Tucci F C.J Am Chem Soc,2002,124(8):1664 被引量:1
  • 8Song C E,Lee J K,Lee S H,Lee S-G.Tetrahedron:Asymmetry,1995,6(5):1063 被引量:1
  • 9Kolb H C,Bennani Y L,Sharpless K B.Tetrahedron:Asymmetry,1993,4(1):133 被引量:1
  • 10Davies S G,Ichihara O.Tetrahedron:Asymmetry,1996,7(7):1919 被引量:1

共引文献35

同被引文献71

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部