期刊文献+

关于线性二层规划分枝定界方法的探讨 被引量:3

A Discussion on the branch-and-bound Approach to Linear Bilevel Programming
下载PDF
导出
摘要 对求解线性二层规划的分枝定界方法进行了探讨.给出的一个例子表明,目前的分枝定界方法不能很好地解决上层带有任意线性形式约束的线性二层规划问题,进而在线性二层规划新定义的基础上提出了求解线性二层规划的扩展分枝定界方法.算例表明扩展分枝定界方法可以有效解决原分枝定界方法的不足。 This paper gives an analysis of the branch-and-bound approach to linear bilevel programming. A designed example shows that the current branch-and-bound approach can' t deal with a linear bilevel programming problem well when the constraint functions at the upper-level are of arbitrary linear form. Then based on the new definition of linear bilevel programming solution, this paper gives an extended branch-and-bound approach to the linear bilevel programming. The numerical results show that the extended branch-and-bound approach can solve the deficiency efficiently.
出处 《运筹与管理》 CSCD 2006年第5期24-28,共5页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70371032 50479039)
关键词 线性二层规划 分枝定界法 最优解 linear bilevel programming branch-and-bound approach optimal solution
  • 相关文献

参考文献6

  • 1Ben-Ayed O,Blair O.Computational difficulty of bilevel linear programming[J].Operations Research,1990,38:556-560. 被引量:1
  • 2Shi Chenggen,Zhang Guangquan,Lu Jie.On the definition of linear bilevel programming solution[J].Applied Mathematics And Compution,2005 (160):169-176. 被引量:1
  • 3Bard J F.Practical practical bilevel optimization algorithms and applications[M].Kluwer Academic Publishers USA,1998. 被引量:1
  • 4LIU Xiaomin,WANG Rishuang(Dept. of Math. Beijing University of Aero.& Astro.,Beijing,100083,P.R.China)WANG Shouyang,WANG Qian (Institute of Systems Science,Chinese Academy of Sciences. Beijing,100081, P.R. China).An Algorithm to Solve Linear Bilevel Programs[J].Systems Science and Systems Engineering,1995,5(2):158-167. 被引量:6
  • 5Shi Chenggen,Zhang Guangquan,Lu Jie.An extended kth-best approach for linear bilevel programming[J].Applied Mathematics And Computation,2005 (164):843-855. 被引量:1
  • 6Shi Chenggen,Zhang Guangquan,Lu Jie.An extended kuhn-tucker approach for linear bilevel programming[J].Applied Mathematics And Compution,2005,(162):51-63. 被引量:1

共引文献5

同被引文献14

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部