期刊文献+

PSO-SOM分类判别研究及其应用 被引量:2

Research on clustering analysis using PSO-SOM algorithm and its application
下载PDF
导出
摘要 针对网络初始权矢量选取的不确定性问题,提出了粒子群优化-自组织映射(PSO-SOM)算法,利用PSO算法优化SOM网络的初始权矢量,进而进行分类.将提出的方法用于基因表达数据的分类判别中,使得SOM网络的误差平方和大大下降,提高了网络的分类精度,表明PSO-SOM算法用于数据的分类判别是切实有效的. To solve the problem of uncertainty in the selection of SOM (self-organizing map) networks' initial weights, a PSO (particle swarm optimization)-SOM algorithm was proposed. First the PSO algorithm was used to optimize the initial weight vectors of SOM networks, and then the data were clustered by SOM networks. Finally the proposed method was applied to clustering analysis of gene expression data, and the results showed that the sum of squared errors was reduced by using the PSO-SOM algorithm, also the precision of clustering is improved. It is concluded that the PSO-SOM algorithm is efficient to clustering analysis of high dimensional data.
出处 《高技术通讯》 CAS CSCD 北大核心 2006年第10期1014-1018,共5页 Chinese High Technology Letters
基金 国家自然科学基金(20506003)、教育部科学技术研究重点项目(106073)和上海启明星项目(04QMX1433)资助项目.
关键词 自组织映射网络 微粒群算法 分类判别 基因表达数据 SOM networks, PSO algorithms, clustering analysis, gene expression data
  • 相关文献

参考文献12

二级参考文献66

  • 1王卫,蔡德钧,万发贯.一种多分辨率图像混合编码方案[J].通信学报,1995,16(2):71-78. 被引量:13
  • 2黎洪松,全子一.一种基于自组织神经网络的图像压缩编码算法[J].电子学报,1996,24(1):6-11. 被引量:15
  • 3WROBLEWSKI J.Finding minimal reducts using genetic algorithms [A]..Procceedings of the Second Annual Join Conference on Information Sciences [C].NC:Wrightsville Beach,1995.186-189. 被引量:1
  • 4张颖.[D].广州:华南理工大学,1997. 被引量:1
  • 5[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930. 被引量:1
  • 6[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469. 被引量:1
  • 7[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100. 被引量:1
  • 8[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976. 被引量:1
  • 9[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948. 被引量:1
  • 10[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43. 被引量:1

共引文献615

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部