期刊文献+

关于数据外推定理的迭代改进

Iterative improvement of data extrapolating theorem
下载PDF
导出
摘要 研究数据外推技术中非常重要的带状区域定位方法.数据外推定理给出外推后带状区域的定位方案.指出这个定理给出的只是一个非常粗糙的定位方案,甚至很多情况下是无效的.针对这个问题,提出了基于迭代进行改进的方案.新方案能够更加精确地定位带状区域,并且在适当的假定下对粗糙方案无效的情况也能定位出一个有效的带状区域.实验例子表明了新方案的精确性与有效性. The locating methods of available bands, which was very important in the data extrapolating technique, were studied. Data Extrapolating Theorem which may offer a method of locating are available band, was proved. Then it is pointed out that current locating methods were very rough and even unfeasible in many cases. Therefore,an iteration-based locating method was proposed,which may locate an available band more precisely and also can locate an available band for cases in which current locating methods fail to work under an appropriate assumption. Examples show the accuracy and effectiveness of the iteration-based method.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2006年第10期1075-1081,共7页 JUSTC
基金 国家重点基础研究发展(973)计划基金(2004CB318000) 国家杰出青年基金(60225002) 国家自然科学基金(60533060和60473132) 教育部留学回国人员科研启动基金资助
关键词 数据外推 定位 迭代 data extrapolating locating iteration
  • 相关文献

参考文献12

  • 1Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Trans.Pattern Anal.Machine Intell.,1990,12(7):629-639. 被引量:1
  • 2Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60:259-268. 被引量:1
  • 3Chan T F,Shen J,Vese L.Variational PDE models in image processing[J].Notice of Amer.Math.Soc.,2003,50(1):14-26. 被引量:1
  • 4Bertalmio M,Cheng L T,Osher S,et al.Variational problems and partial differential equations on implicit surfaces[J].J Comput.Phys.,2001,174(2):759-780. 被引量:1
  • 5Tang B,Sapiro G,Caselles V.Diffusion of general data on non-flat manifolds via harmonic maps theory:the direction diffusion case[J].International Journal of Computer Vision,2000,36(2):149-161. 被引量:1
  • 6WU C L,DENG J S,ZHU W M,et al.Inpainting images on implicit surfaces[C]∥Proceeding of Pacific Graphics 2005.Macao:University of Macao,2005. 被引量:1
  • 7Chen S,Merriman B,Osher S,et al.A simple level set method for solving Stefan problems[J].J Comput.Phys.,1997,135:8-29. 被引量:1
  • 8Hou T,Li Z,Osher S,et al.A hybrid method for moving interface problems with applications to the Hele-Shaw flows[J].J Comput.Phys.1997,134:236. 被引量:1
  • 9Osher S,Fedkiw R.Level Set Methods and Dynamic Implicit Surfaces[M].New York:Springer,2002. 被引量:1
  • 10Chen S,Merriman B,Kang M,et al.A level set method for thin film epitaxial growth[J].J Comp.Phys.,2001,167:475-500. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部