摘要
图G的排斥(整)和数ε(G)(ζ′(G))是使得G∪nK1是排斥(整)和图的非负整数n的最小值.图Cn×K2称为棱柱.文中给出了残棱柱的定义,并证明了残棱柱的排斥整和数等于4.
The exclusive (integral) sum number ε(G)(ζ′(G)) of G is the smallest number of isolated vertices which when added to G result in an exclusive (integral) sum graph. Cn × K2 is called prism. This paper gives a definition of incomplete prism , and has proved the exclusive integral sum number of incomplete prism is 4 for all n≥3.
出处
《德州学院学报》
2006年第5期83-85,共3页
Journal of Dezhou University
关键词
残棱柱
排斥整和数
排斥整和标号
排斥图
incomplete prism
exclusive integral sum number
exclusive integral sum labeling
exclusive graph