摘要
Wired equivalent security is difficult to provide in wireless networks due to high dynamics, wireless link vulnerability, and decentralization. The Elliptic Curve Digital Signature Algorithm(ECDSA) has been applied to wireless networks because of its low computational cost and short key size, which reduces the overheads in a wireless environment. This study improves the ECDSA scheme by reducing its time complexity. The significant advantage of the algorithm is that our new scheme needs not to calculate modular inverse operation in the phases of signature generation and signature verification. Such an improvement makes the proposed scheme more efficient and secure.
Wired equivalent security is difficult to provide in wireless networks due to high dynamics, wireless link vulnerability, and decentralization. The Elliptic Curve Digital Signature Algorithm(ECDSA) has been applied to wireless networks because of its low computational cost and short key size, which reduces the overheads in a wireless environment. This study improves the ECDSA scheme by reducing its time complexity. The significant advantage of the algorithm is that our new scheme needs not to calculate modular inverse operation in the phases of signature generation and signature verification. Such an improvement makes the proposed scheme more efficient and secure.
基金
Supported by the Science Foundation of Aeronau-tics (05F53029)
Graduate Starting Seed Fund of NorthwesternPolytechnical University (Z200633)