期刊文献+

有效的模(2^(n)+1)乘算法及其VLSI设计

Efficient Algorithm and VLSI Architecture for Module (2^n + 1) Multiplier
下载PDF
导出
摘要 模乘运算在剩余数值系统、数字信号处理系统及其它领域都具有广泛的应用,模乘法器的硬件实现具有重要的作用。提出了一种改进的模(2^n+1)余数乘法器的算法及其硬件结构,其输入为通常的二进制表示,因此无需另外的输入数据转换电路而可直接用于数字信号处理应用。通过利用模(2^n+1)运算的周期性简化其乘积项并重组求和项,以及采用改进的进位存储加法器和超前进位加法器优化结构以减少路径延时和硬件复杂度。比较其它同类设计,新的结构具有较好的面积、延时性能。 Hardware implementation of modulo multipliers is a very important task because modulo multiplication is widely used in residue number system(RNS) arithmetic, digital signal processing(DSP) and other applications. In this paper, an efficient algorithm and architecture for modulo (2^n+ 1 )multiplier was presented, which were based on the modified carry save adder(MCSA) array and the modified carry look-ahead adder(MCLA). Where the input operands are represented as normal binary,resulting in no need of additional conversion circuit for DSP applications. The path delay and hardware complexity are reduced considerately by making use of periodicity of modulo( 2^n+ 1 )operation to simplify production terms and re-combining the summation terms. Compared with the other designs, the proposed architecture is simple and efficient with regard to area and delay.
出处 《信号处理》 CSCD 北大核心 2006年第5期703-706,共4页 Journal of Signal Processing
基金 国家863计划项目基金的资助(2002AA133010)
关键词 剩余数值系统 模(2^n+1)乘法器 周期性 RNS modulo ( 2 ^n + 1 ) multiplier periodicity
  • 相关文献

参考文献15

  • 1Y. Liu, E. M-K. Lai, Design and implementation of an RNS-based 2-D DWT processor,IEEE Trans. On Consumer Electronics, vol. 50, no. 1, Feb. 2004, pp. 376-385. 被引量:1
  • 2F. J. Taylor, A VLSI Residue Arithmetic Multiplier, IEEE Trans. Computers, vol. 31, no. 6, June 1982, pp. 540-546. 被引量:1
  • 3F. J. Taylor, A Single Modulus Complex ALU for Signal Processing, IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 33, no. 5, Oct. 1985, pp. 1,302-1,315. 被引量:1
  • 4M. Benaissa, A. Bouridane, S. S. Dlay, and A. G. J. Holt,Diminished-1 Multiplier for a Fast Convolver and Correlator Using the Fermat Number Transform,lEE Proc. G, vol.135 ,no. 5 ,Oct. 1988 ,pp. 187-193. 被引量:1
  • 5M. Benaissa, A. Pajayakrit, S. S. Dlay, and A. G. J. Holt,VLSI Design for Diminished-1 Multiplication of Integers Modulo a Fermat Number, lEE Proc. E, vol. 135, no. 3,May 1988 ,pp. 161-164. 被引量:1
  • 6A. Skavantzos, P. B. Rao. New multipliers modulo( 2^n-1 )IEEE Trans. Comput. , vol. 41, no. 8, Aug. 1992, pp957-961. 被引量:1
  • 7A. V. Curiger, H. Bonnenberg, and H. Kaeslin. Regular VLSI architectures for multiplication modulo (2^n + 1 ) ).IEEE J. Solid State Circuits,vol. 26, no. 7, July 1991, pp.990 -994. 被引量:1
  • 8A. Hiasat. New memoryless, rood (2^n + 1 ) residue multiplier. Electronics Letters, 28 (3) ,Jan. 1992, pp. 314-315. 被引量:1
  • 9Y. Ma. A simplified architecture for modulo( 2^n + 1 ) multiplication. IEEE Trans. Comput. , vol. 47, no. 3, Mar. 1998,pp. 333-337. 被引量:1
  • 10Z. Wang, G. A. Jullien, and W. C. Miller. An efficient tree architecture for modulo 2^n + 1 multiplication. J. VLSI Signal Processing Systems, vol. 14, no. 3, Dec. 1996, pp.241-248. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部