期刊文献+

溶胶-凝胶法制备纳米羟基磷灰石超薄薄膜及其表征 被引量:3

Sol-gel Preparation of Ultrathin Nano-Hydroxyapatite Coating and Its Characterization
下载PDF
导出
摘要 分别使用有机溶胶-凝胶以及无机溶胶作为羟基磷灰石(HA)前驱体,利用浸渍涂层(Dip-coating)技术在钛表面制备纳米超薄薄膜。利用扫描电镜(SEM)和X射线衍射(XRD)表征薄膜形态、微晶尺寸分布(D)和微观应变(ε)。结果表明:在大于400℃热处理后,薄膜开始呈现磷灰石结构;在400℃~600℃范围内,热处理温度对两种磷灰石薄膜D和ε的影响显著;SEM结果证明HA前驱体种类严重影响两种纳米HA薄膜的颗粒团聚尺寸;有机溶胶-凝胶和无机凝胶在钛表面制备的HA薄膜颗粒团聚尺寸分别为25nm和100nm,薄膜厚度分别为2.5μm和5.0μm。浸渍涂层技术制备的HA薄膜表面/界面形态完整,薄膜表面无明显微裂纹。 Present study used dip-coating techniques to fabricate uhrathin nano-HA coating on titanium in organic sol-gel of Ca(NO3)2·4H2O and PO(CH3)3 and inorganic sol-gel of Ca(NO3)2·4H2O and (NH4)2HPO4. Scanning electron microscope (SEM) and grazing-incidence X-ray diffraction (XRD) were used to observe the morphology and distribution of crystallite size (D)and lattice strain (ε)of ultrathin nano-HA coating. After heated at 400℃, the apatite structure of coatings on titanium began to appear. At beating temperature of 400℃-600℃, the effect of beating temperature on D and ε of both coatings was obvious. Precursor types significantly affected the particle diameters of nano-HA coatings, which were 25-40 nm for organic sol-gel and about 100 nm for inorganic sol. The thickness of uhrathin nano-HA coatings was 2.5μm for organic sol-gel and 5μm for inorganic sol and morphology of interfaces between coating and titanium was intact and homogenous.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2006年第5期1075-1079,共5页 Journal of Biomedical Engineering
关键词 浸渍-薄膜 溶胶-凝胶 羟基磷灰石 X衍射 微晶尺寸分配 微观应变 Dip-coating Sol-gel Hydroxyapatite (HA) X-ray diffraction (XRD) Distribution of crystallite size Micro-strain
  • 相关文献

参考文献13

  • 1Wen J, Yang L, Chen JR, et al. Chemical gradient in plasmasprayed HA coatings. Biomaterials, 2000; 21(13) : 1339 被引量:1
  • 2Zhang C, Yang L, Zhang XD. In vitro stability of plasmasprayed hydroxyapatite coatings on Ti-6Al-4V implants under cyclic loading. Journal of Biomedical Materials Research, 2000; 50(2) : 267 被引量:1
  • 3Weir M, Rays AJ, Misthropies BK, et al. Electrophoretic deposition of hydroxyapatite coatings on metal substrates: A nanoparticulate dual-coating approach. Journal of Sol-Gel Science and Technology, 2001; 21(1-2) : 39 被引量:1
  • 4Li P, Groot K, Kokubo T. Bioactive Ca10(PO4)6(OH)2-TiO2 composite coating prepared by sol-gel process. Journal of Sol-Gel Science and Technology, 1996; 7(1-2) : 27 被引量:1
  • 5Montener A, Gnappi G, Ferrari F, et al. Sol-gel derived hydroxyapatite coatings on titanium substrate. Journal of Materials Science, 2000; 35(11) : 2791 被引量:1
  • 6Mavis B, Tas AC. Dip coating of calcium hydroxyapatite on Ti-6Al-4V Substrates. J Am Ceram Soc, 2000;83: 989 被引量:1
  • 7Tkalcec E, Sauer M, Nonninger R, et al. Sol-gel-derived hydroxyapatite powders and coatings. Journal of Materials Science, 2001; 36(21) : 5253 被引量:1
  • 8You C, Oh S, Kim S. Influences of heating condition and substrate-surface roughness on the characteristics of sol-gel-derived hydroxyapatite coatings. Journal of Sol-Gel Science and Technology, 2001; 21(1-2) : 49 被引量:1
  • 9Ouo LH, Huang M, Zhang XD. Effects of sintering temperature on structure of hydroxyapatite studied with Rietveld method. Journal of Materials Science: Materials in Medicine, 2003; 14(9) : 817 被引量:1
  • 10Kaciullis S, Mattoqno G, Napoli A, et al. Surface analysis of biocompatible coatings on titanium. Journal of Electron Spectroscopy and Related Phenomena, 1998; 95(1) : 61 被引量:1

同被引文献54

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部