摘要
对于一个具有n-进位吸引子的区间连续映射,证明了:“n不是2的方幂”是该映射具有正拓扑熵的充分条件但不是必要条件;探讨了函数方程f^3(λx)=λf(x)的一类解,并证明这类解中的每一个成员都有3-进位吸引子.
The notion of adic attractor is introduced. For a continuous interval map with nadic attractor, the paper proves that the condition that n is not a power of 2 is sufficient but not necessary for the map to have positive topological entropy. And a class of solutions of the functional equation f^3(λx) = λf(x), which will be proved to have 3-adic attractor, are investigated.
出处
《数学年刊(A辑)》
CSCD
北大核心
2006年第5期587-594,共8页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.19971035)
吉林大学创新基金(No.2004CX051)资助的项目
关键词
区间映射
进位吸引子
拓扑熵
Maps of interval, Adic attractor, Topological entropy