摘要
考虑生存函数为-F(x1,x2,……xn)=P{X1>x1…,Xn>xn}=exp{-[n∑i=1(xi/θi)♂]δ}(0<xi<∞,0<δ≤1,0<θi<∞,i=-↑1,n 的一类多维指数分布,给出了它的密度函数的表示式,并讨论了它的性质.提出了相关参数δ的估计δ,证明了δ有相合性和渐近正态性,得到了δ的渐近方差δ.最后还给出了若干随机模拟的结果.
In this paper, the authors consider a class of multivariate exponential distributions with survival function -F(x1,x2,……xn)=P{X1〉x1…,Xn〉xn}=exp{-[n∑i=1(xi/θi)♂]δ}(0〈xi〈∞,0〈δ≤1,0〈θi〈∞,i=-↑1,n The density function is given and its properties are discussed. The estimator δ of the parameter δ is proposed, its consistence and asymptotic normality are established, and the asymptotic variance δ2δ is derived. Some simulation results are provided.
出处
《系统科学与数学》
CSCD
北大核心
2006年第5期619-628,共10页
Journal of Systems Science and Mathematical Sciences
关键词
多维指数分布
参数估计
相关参数
渐近性质
Multivariate exponential distribution, parameters estimation, correlation parameter, asymptotic property.