期刊文献+

中立型非线性随机系统的渐近稳定性

Asymptotic stability of nonlinear neutral stochastic systems
下载PDF
导出
摘要 研究了一类具有可变时滞的中立型非线性随机系统解的渐近性质,利用李亚普诺夫函数和半鞅收敛定理,得到了该系统解的三个渐近性质不等式;通过伊藤公式与半鞅收敛定理及不等式技巧建立了确定这种系统解的极限位置的充分条件,并且从这些条件得到了中立型非线性时滞随机系统解的渐近稳定性、多项式渐近稳定性及指数稳定性有效判据,其结果涵盖并推广了毛学荣关于中立型非线性随机系统解的渐近性质方面的部分结论. The asymptotic properties of one type of nonlinear neutral stochastic systems were discussed. By Lyapunov function and supermartingales convergence-theorem, three results on inequalities with its asymptotic properties are given. Sufficient condition for locating the limit set of the solution by using Ito formula and semi-martingale convergence theorem and inequality technology were established, and asymptotic characteristic, such as asymptotic stabilities, polynomial stabilities and exponential stabilities, of the solution of the nonlinear neutral stochastic systems with delays are obtained. All the results imply and generalize the partial conclusions on asymptotic properties of nonlinear neutral stochastic systems Mao discussed in existing references.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第10期61-63,92,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60574025 60474011) 湖北省自然科学基金资助项目(2004ABA055)
关键词 中立型非线性随机系统 渐近稳定性 李亚普诺夫函数 上鞅收敛定理 伊藤公式 nonlinear neutral stochastic systems asymptotic stability Lyapunov function super-mar tingales convergence theorem Ito's formula
  • 相关文献

参考文献8

  • 1廖晓昕著..动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000:542.
  • 2Kolmanovskii V B, Myshkis, A. Applied theory of functional differential equations[M]. London: Kluwer Academic Publishers, 1992. 被引量:1
  • 3Mao X. Exponential stability of neutral stochastic functional differential equations [J]. Systems and Control Letters, 1995, 26(2): 245-251. 被引量:1
  • 4Mao X. Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations[J]. SIAM J Math Anal, 1997, 28(2): 389-401. 被引量:1
  • 5沈轶,廖晓昕.随机中立型泛函微分方程指数稳定的Razumikhin型定理[J].科学通报,1998,43(21):2272-2275. 被引量:10
  • 6Lipster R S, Shiryayev A N. Theory of Martingales[M]. London: Kluwer Academic Publishers, 1989. 被引量:1
  • 7Mao X. Asymptotic properties of neutral stochastic differential delay equations[J]. Stochastic & Stochastic Reports, 2000, 68(2): 273-295. 被引量:1
  • 8Mao X. Stochastic differential equations and applications[M]. London: Horwood, 1997. 被引量:1

二级参考文献5

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部