期刊文献+

基于SVR增量学习算法的变桨距风力机系统在线辨识 被引量:6

INCREMENTAL LEARNING WITH SUPPORT VECTOR REGRESSION FOR PITCH-CONTROLLED WIND TURBINE ONLINE IDENTIFICATION
下载PDF
导出
摘要 针对变桨距风力机模型非线性很强的特点,采用支持向量回归(SVR)算法进行辨识,数据由BLADED仿真软件提供,经训练检测的结果表明,SVR算法在变桨距风力机非线性模型辨识上具有很高的准确性。考虑到风力机现场工作过程中会出现模型变化,利用增量学习算法实现在线辨识。由于在线SVR辨识计算时间太长,通过改进的序列最小优化(SMO)算法代替原来的凸二次规划(QP)算法。同时提出满足度系数,排除系统无效的突变点,使在线辨识具有鲁棒性,并通过双支持向量机(SVM)算法实现在线辨识的记忆功能,最终辨识结果不仅有很强的精度,而且大大减小了计算时间。 Support vector regression (SVR) was used for pitch-controlled wind turbine system identification, which is greatly nonlinear. The data was afforded by BLADED simulated software. After training, the testing result showed high veracity. But wind turbine' s model may be changed under fieldwork. Therefore incremental learning algorithm is adopted for SVR online identification. However its calculation time is too long, so the improved sequential minimal optimization (SMO) algorithm was used to substitute the original quadratic programming (QP) algorithm. The satisfying coefficient was presented to eliminate the invalid break points, which made online identification robust. Moreover, the two support vector machine (SVM) algorithm made online identification having memory function. The final result indicated that the identification algorithm has high precision with short calculation time.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2006年第3期223-229,共7页 Acta Energiae Solaris Sinica
基金 国家高科技研究计划(863计划)重大专项课题(2001AA512020)
关键词 支持向量回归 支持向量机 增量学习 序列最小优化 变桨距控制 在线辨识 support vector regression support vector machine learning algorithm sequential minimal optimization pitch-controlled online identification
  • 相关文献

参考文献13

  • 1Cherkaasky V , Mulier F. Learning from data: concepts, theory and methods[M]. NewYork, John Wiley, 1998. 被引量:1
  • 2Sousso Kelouwani, Kodjo Agbossou. Nonlinear model identification of wind turbine with a neural network [ J ]. IEEE Trans, On EC,2004(99) : 1-6. 被引量:1
  • 3Vapnik V, Chervonenkis Z. On the uniform convergence of relative frequencies of events to their probabilities [ M ].Doklady Adademmii NauK USS, 1968. 被引量:1
  • 4[著]Vapnik V N,[译]张学工.统计学习理论的本质[M].北京:清华大学出版社,2000. 被引量:1
  • 5Drezet P M L, Harrison R F. Support vector machines for system identification [ A]. Control' 98 UKACC international conference[ C], 1998,9(1) : 688-692. 被引量:1
  • 6Arthur Gretton, Amaud Doucet, et al. Support vector regression for black-box system identification[A]. Statistical signal processing proceedings of the llth IEEE signal processing workshop [C], 2001:341-344. 被引量:1
  • 7林勇刚,李伟,叶杭冶,邱敏秀,金波,刘湘琪.变速恒频风力机组变桨距控制系统[J].农业机械学报,2004,35(4):110-114. 被引量:43
  • 8Ezzeldin S Abdin , Wilson Xu. Control design and dynamic performance analysis of a wind turbine-induction generator unit[J]. IEEE Tram On EC,2000,3(15):91-96. 被引量:1
  • 9Maureen Hand M, Balas Mark J. Non-linear and linear model based controller design for variable-speed wind turbines[A]. 3^rd ASME/JSME joint fluids engineering conference[C], 1999,7: 18-23. 被引量:1
  • 10Smola A J, Scholkopf B. A tutorial on support vector regresion[ M ]. ESPRIT, Neural and computational learning thery neuroCOLT2 NC2-TR- 1998-030,1998. 被引量:1

二级参考文献5

  • 1Thomas Ackermann, Lennart Soder. Wind energy technology and current status: a review. Renewable and Sustainable Energy Reviews, 2000(4):315~374 被引量:1
  • 2Ezzeldin S Abdin, Wilson Xu. Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Trans. on EC,2000,3(15):91~96 被引量:1
  • 3Maureen H M, Balas M J. Non-linear and linear model based controller design for variable-speed wind turbines. 3rd ASME/JSME Joint Fluids Engineering Conference, 1999,7:18~23 被引量:1
  • 4Eduard Muljadi, Butterfield C P. Pitch-controlled variable-speed wind turbine generation. IEEE Trans. on IA,2001,1(37): 240~246 被引量:1
  • 5Danidl Trudnowski, David LeMieux. Independent pitch control using rotor postion feedback for wind sheer and gravity fatigue reduction in a wind turbine. American Control Conference,2002(6):4335~4340 被引量:1

共引文献42

同被引文献47

引证文献6

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部