期刊文献+

遗传算法的一种新颖编码研究 被引量:7

A New Coding Method for Genetic Algorithms
下载PDF
导出
摘要 提出了一种新的基于N进制分部编码算子的遗传算法.该编码算子首先将每个基因值用N进制的浮点数表示,然后将其分为整数部分和小数部分,分别重新编码组成染色体;相应的选择、交叉、变异算子采用符号编码的思想,充分利用N进制浮点数的特点进行设计.在遗传算法开始阶段,该编码算子进行整数部分和小数部分的遗传操作,使得遗传算法在早期具有很强的全局搜索能力,避免陷入局部极值;在后期进行小数部分的遗传操作,使得遗传在后期具有很强的局部搜索能力,能够很快地搜索到全局极值.通过理论分析,证明了N进制分部编码算子与传统的浮点数编码和二进制编码算子相比具有优越性,并通过典型函数的仿真进行了验证.* A new genetic algorithm based on N-decimal system parted coding operator is presented, The codingoperator expresses the genes with N-decimal system floating numbers, and then the genes are divided into integer part and decimal part. The two parts are encoded into chromosomes respectively, The corresponding selection, crossover and mutation operators are designed with the theory of symbol encoding and the properties of N-decimal system floating numbers. In the early stage of the genetic algorithms, the three genetic mechanisms are used both in integer part and decimal part, so that the genetic algorithms have stronger global search ability, keep the population diversity efficiently and avoid falling into local extremum. In the later stage of the genetic algorithms, the three genetic operators are used in decimal part, so the genetic algorithms have stronger local search ability and fast convergence ability. Theoretical analysis shows that the N-decimal system parted coding mechanism is more efficient than the floating encoding method and the binary encoding method, Simulations on some representative functions are given to validate the results and theory.
出处 《信息与控制》 CSCD 北大核心 2006年第5期624-628,633,共6页 Information and Control
基金 国家自然科学基金资助项目(30371362)
关键词 编码算子 遗传算法 优化 coding operator genetic algorithm optimization
  • 相关文献

参考文献10

  • 1Wu X E,Zhu Y P.A mixed-encoding genetic algorithm with beam constraint for conformal radiotherapy treatment planning[J].Medical Physics,2000,27(11):2508~2516. 被引量:1
  • 2Qing A Y,Lee C K,Jen L.Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(3):665~676. 被引量:1
  • 3Grigioni M M,Morbiducci U,Tura A.Genetic algorithms for parameter estimation in mathematical modeling of glucose metabolism[J].Computers in Biology and Medicine,2005,35(10):862~874. 被引量:1
  • 4Bunnag D,Sun M.Genetic algorithm for constrained global optimization in continuous variables[J].Applied Mathematics and Computation,2005,171 (1):604~636. 被引量:1
  • 5Ha J L,Fung R F.Hah C F.Optimization of an impact drive mechanism based on real-coded genetic algorithm[J].Sensors and Actuators,2005,121(2):488~493. 被引量:1
  • 6Balland L,Estel L,Cosmao J.M,et al.A genetic algorithm with decimal coding for the estimation of kinetic and energetic parameters[J].Chemometrics and Intelligent Laboratory Systems,2000,50(1):121~135. 被引量:1
  • 7Snyers D,Petillot Y.Image processing optimization by genetic algorithm with a new coding scheme[J].Pattern Recognition Letrets,1995,16(8):843. 被引量:1
  • 8周育人,李元香,王勇.一种有效的实数编码遗传算法[J].武汉大学学报(理学版),2003,49(1):39-43. 被引量:18
  • 9张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139. 被引量:93
  • 10Zheng D X M,Ng S T,Kumaraswamy M M.Applying Pareto ranking and niche formation to genetic algorithm-based multiob-jective time-cost optimization[J].Journal of Construction Engineering and Management,2005,131 (1):81~91. 被引量:1

二级参考文献12

  • 1陈根社,陈新海.遗传算法的研究与进展[J].信息与控制,1994,23(4):215-222. 被引量:109
  • 2张晓缋,戴冠中,徐乃平.一种新的优化搜索算法──遗传算法[J].控制理论与应用,1995,12(3):265-273. 被引量:96
  • 3Back T, Hammel U, Schwefel H P. Evolutionary Computation: Comments on the History and Current State [J]. IEEE Transactions on Evolutionary Computation, 1997,1(1):3-17. 被引量:1
  • 4Storn R, Price K. Differential Evolution-a Fast and Efficient Heuristic for Global Optimization Over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11:341-359. 被引量:1
  • 5Herrera F, Lozano M, Verdegay J L. Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis [J]. Artificial Intelligence Review,1998,12(4):265-319. 被引量:1
  • 6Deb K, Beyer H G. Self-Adaptive Genetic Algorithms with Simulated Binary Crossover [J]. Evolutionary Computation, 2001,9(2):197-221. 被引量:1
  • 7Ono I, Kita H, Kobayashi S. A Robust Real-Coded Genetic Algorithm Using Unimodal Normal Distribution Crossover Augmented by Uniform Crossover: Effects of Self Adaptation of Crossover Probabilities [A]. In: Banzhaf W, Daida J, Eiben E, eds. GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference[C]. San Mateo, CA: Morgan Kaufmann Press, 1999. 496-503. 被引量:1
  • 8Tsutsui S, Yamamura M, Higuchi T. Multi-Parent Recombination with Simplex Crossover in Real Coded Genetic Algorithms [A]. In: Banzhaf W, Daida J, Eiben E, eds. GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference[C]. San Mateo, CA: Morgan Kaufmann Press, 1999. 657-664. 被引量:1
  • 9Guo Tao, Kang Li-shan, Li Yan. A New Algorithm for Solving Function Optimization Problems with Inequality Constraints [J]. J Wuhan Univ(Nat Sci Ed), 1999,45(5B):771-775(Ch). 被引量:1
  • 10Beyer H G, Deb K. On Self-adaptive Features in Real-parameter Evolutionary Algorithms [J]. IEEE Transactions on Evolutionary Computation, 2001,5(3): 250-270. 被引量:1

共引文献108

同被引文献86

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部