期刊文献+

基于决策树的多光谱影像分类研究 被引量:8

CLASSIFICATION OF MULTISPECTRAL IMAGES BASED ON DATA MINING
下载PDF
导出
摘要 采用了辅以纹理特征的决策树方法进行分类,探讨了决策树在遥感数据分类方面的优势,提高了遥感影像的分类精度。 Aiming at the TM images, the decision tree classifier using spectral and texture features is adopted to classification. The experiments prove that the decision tree classifier can get higher accuracy compared with the traditional classification algorism, and can select the features automatically, which decreases the number of the input data.
作者 林丽群 舒宁
出处 《测绘信息与工程》 2006年第5期1-3,共3页 Journal of Geomatics
关键词 决策树 分类 纹理 特征选择 TM 遥感 decision tree classification texture feature selection TM RS
  • 相关文献

参考文献8

二级参考文献29

  • 1周成虎,杜云艳,骆剑承.基于知识的AVHRR影像的水体自动识别方法与模型研究[J].自然灾害学报,1996,5(3):100-108. 被引量:80
  • 2刘建波,戴昌达.TM图象在大型水库库情监测管理中的应用[J].环境遥感,1996,11(1):54-58. 被引量:76
  • 3RichardODuda PeterEHart DavidGStork.模式分类[M].北京:机械工业出版社,2003.134-174. 被引量:15
  • 4Barton I J, Bathols J M. Monitoring floods with AVHRR[J]. Remote Sensing of E nvironment,1989,30(1):89-94. 被引量:1
  • 5朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000.4. 被引量:106
  • 6Hanson M C , Dubayah R, DeFries R S. Classification Trees: an Alternative to Traditional Land Cover Classifers[J]. INT. J. Remote Sensing,1996,17:1075-1081. 被引量:1
  • 7DeFries R S, Hansen M C, Townsend J G R, et al. Global Land Cover Classifications at 8 km Spatial Resolution: The Use of Training Data Derived from Landsat Imagery in Decision Tree Classifiers [J]. INT. J. Remote Sensing, 1998, 19: 3141-3168. 被引量:1
  • 8Friedl M A, McIver D K, Hodges J C F, et al. Global Land Cover Mapping from MODIS: Algorithms and Early Results[J]. Remote Sensing of Environment,2002, 83: 287-302. 被引量:1
  • 9Muchoney D, Borak J, Borak H C, et al. Application of the MODIS Global Supervised Classification to Vegetation and Land Cover Mapping of Central America [J]. INT. J. Remote Sensing, 2000,21:1115-1138. 被引量:1
  • 10Joy S M, Reich R M, Reynolds R T. A Non-parametric,Supervised Classification of Vegetation Types on the Kaibab National Forest using decision trees[J]. INT. J. Remote Sensing, 2003, 24(9): 1835-1852. 被引量:1

共引文献149

同被引文献48

引证文献8

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部