期刊文献+

与一个压缩型映射部分交换的连续映射的不动点

The Continuous Mapping Fixed Point Partial Commutative with a Contractive Mapping
原文传递
导出
摘要 研究度量空间上两个自映射f,g在部分交换条件下的公共不动点问题.Pan t等人用不等式条件去肯定f,g在等值点的值是f,g的公共不动点.探求条件,使得叠代产生的f,g的等值点列的极限为f,g的公共不动点更切合实际.定理2.1和定理2.3是这方面研究的两个结果,定理2.2拓展了Banach压缩映射原理. This paper studies on the common fixed point of two self-maps, f and g, under partial commutation in a metric space. In Part 1 and 2, inequality condition (ae) is employed to argue that the value of f and g at the coincidence point is the common fixed point of them. It is believed more practical to search for conditions to make the limit of the coincidence points sequence of ./"and g iteratively happened in partial commutation be the common fixed point of f and g. Theorem 2.1 and 2.3 in the paper are the two research findings while Theorem 2.2 has developed Banach's contraction mapping principle,
机构地区 河池学院数学系
出处 《数学的实践与认识》 CSCD 北大核心 2006年第9期361-364,共4页 Mathematics in Practice and Theory
关键词 压缩型条件 部分交换映射 公共不动点 contractive type conditions t partial commutative mapping common fixed point
  • 相关文献

参考文献3

  • 1Sastry K P R, Krishna Murthy I S R. Common fixed points of two commuting tangential selfmaps on a metric space[J]. J Math Anal Appl. 2000. 250: 731-734. 被引量:1
  • 2Pant R P. Common fixed point of lipschitz type mapping pairs [J]. J Math Anal Appl,1999,240: 280-283. 被引量:1
  • 3Hutson V. Pyre J S. Applications of Functional Analysis and Operator Theory[M]. London, Academic Press,1980: 116. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部