摘要
有些微生物在连续培养中会产生毒素来抑制竞争者,同时竞争中也会产生一些振荡行为.本文研究两个微生物竞争同一营养,而其中一个竞争者会产生毒素抑制另一竞争者且产物系数为一般的形如δ1=A1+B1Sn,δ2=A2+B2Sm的函数时的生化反应模型.分析了系统平衡点的稳定性和当系统的某一微生物物种处于竞争劣势而趋于灭绝时另一微生物物种和营养的二维流形上极限环的存在性.
Some microorganisms can produce toxins against its competitors, and in the competition there may have some oscillation. In this paper, a model with δ1= A1+ B1S^n and δ2= A2+B2S^n variable yields of competition in the bio-reactor of two competitors for a single nutrient where one of the competitors can produce toxin against its opponent is proposed. The properties of equilibrium points and the existence of limit cycles on the two dimensional stable manifold when one microorganism is going to vanish were obtained.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第9期225-232,共8页
Mathematics in Practice and Theory
关键词
生化反应应
毒素
平衡点
极限环
Bio-reactor
toxin
equilibrium points
limit cycles