摘要
介绍了三维无单元伽辽金方法的基本理论,并将其应用于电磁场数值计算中。无单元伽辽金方法的理论基础是滑动最小二乘法,它只需节点信息,无需单元信息,摆脱了单元的限制,该方法对有限元法是一个很好的补充,可用于有限元法不能有效解决的某些工程电磁场问题,如薄膜问题、微小气隙问题、运动线圈问题等。针对权函数对无单元法的影响进行了详细研究,并给出了支撑域的选取原则及三维场中影响半径的计算公式。
The element free Galerkin method (EFGM) for problems in three-dimensional (3D) electromagnetic computations was proposed in this paper. The EFGM is based on moving least square (MLS) approximations and uses only a set of nodes to formulate the discrete model. Therefore, it can solve some problems that the finite element method (FEM) can not solve effectively in electromagnetic field, such as thin plate, narrow gap, moving conductor problems, etc. In this paper, the influence of weight functions to the EFGM was studied thoroughly, the regularity of the influence domain width and the formula of the influence radius of nodes in three dimensional computations were given.
出处
《电工技术学报》
EI
CSCD
北大核心
2006年第9期116-121,共6页
Transactions of China Electrotechnical Society
基金
This work was supported by the Ministry of Science and Technologyof China ( 2004CCA06500 ),the Provincial Natural ScienceFoundation of Hebei, China( 2004000058),and the EducationFoundation of Hebei, China (2005217).
关键词
三维无单元伽辽金方法
电磁场数值计算
权函数
影响域
3D element free Galerkin method (EFGM), electromagnetic computations, weight functions, influence domain