期刊文献+

三维无单元伽辽金法及其在电磁场数值分析中的应用(英文) 被引量:2

Three-Dimensional Element Free Galerkin Method and Its Applications in Electromagnetic Field Numerical Analysis
下载PDF
导出
摘要 介绍了三维无单元伽辽金方法的基本理论,并将其应用于电磁场数值计算中。无单元伽辽金方法的理论基础是滑动最小二乘法,它只需节点信息,无需单元信息,摆脱了单元的限制,该方法对有限元法是一个很好的补充,可用于有限元法不能有效解决的某些工程电磁场问题,如薄膜问题、微小气隙问题、运动线圈问题等。针对权函数对无单元法的影响进行了详细研究,并给出了支撑域的选取原则及三维场中影响半径的计算公式。 The element free Galerkin method (EFGM) for problems in three-dimensional (3D) electromagnetic computations was proposed in this paper. The EFGM is based on moving least square (MLS) approximations and uses only a set of nodes to formulate the discrete model. Therefore, it can solve some problems that the finite element method (FEM) can not solve effectively in electromagnetic field, such as thin plate, narrow gap, moving conductor problems, etc. In this paper, the influence of weight functions to the EFGM was studied thoroughly, the regularity of the influence domain width and the formula of the influence radius of nodes in three dimensional computations were given.
出处 《电工技术学报》 EI CSCD 北大核心 2006年第9期116-121,共6页 Transactions of China Electrotechnical Society
基金 This work was supported by the Ministry of Science and Technologyof China ( 2004CCA06500 ),the Provincial Natural ScienceFoundation of Hebei, China( 2004000058),and the EducationFoundation of Hebei, China (2005217).
关键词 三维无单元伽辽金方法 电磁场数值计算 权函数 影响域 3D element free Galerkin method (EFGM), electromagnetic computations, weight functions, influence domain
  • 相关文献

参考文献9

  • 1Belytschko T,Lu Y Y,Gu L.Element free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1994,37:229~256 被引量:1
  • 2Lu Y Y,Belytschko T,Gu L.A new implementation of the element free Galerkin method[J].Computer Methods Applied Mechanics Engineering.,1994,113:397~414 被引量:1
  • 3Belytschko T,Organ D,Krongauz Y.A coupled finite element-free Galerkin method[J].Computationl Mathmatics,1995,17:186~195 被引量:1
  • 4Belytschko T,Krongauz Y,Organ D.Meshless method:an overview and recent development[J].Computer Methods in Applied Mechanics and Engineering,1996,139:3~47 被引量:1
  • 5Marechal Y,Coulomb J L,Meunier G.Use of the diffuse approximation method for electromagnetic field computation[J].IEEE Transactions on Magnetics,1994,30(5):3558~3561 被引量:1
  • 6Herault C,Marechal Y.Boundary and interface conditions in meshless methods[J].IEEE Transactions on Magnetics,1999,35(4):1450~1453 被引量:1
  • 7Zhu T,Atluri S N.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method[J].Comput.Mechanics,1998,21(3):211~222 被引量:1
  • 8Liu Suzhen,Yang Qingxin,Chen Haiyan,et al.Improvement of the element-free Galerkin method for electromagnetic field calculation[J].IEEE Trans.on Applied Superconductivity,2004,14(2):1866~1869 被引量:1
  • 9刘素贞,杨庆新,陈海燕,寇晓东.无单元法在电磁场数值计算中的应用研究[J].电工技术学报,2001,16(2):30-33. 被引量:19

二级参考文献4

共引文献18

同被引文献25

  • 1倪培宏,杨仕友.无网格伽辽金法及其在电磁场数值计算中的应用[J].电机与控制学报,2003,7(1):26-29. 被引量:8
  • 2张勇,邵可然,陈德智.工程瞬态涡流问题的边界无单元方法求解[J].华中科技大学学报(自然科学版),2005,33(7):1-3. 被引量:6
  • 3赵美玲,聂玉峰,左传伟.电磁场计算中的无网格局部Petrov-Galerkin方法[J].电机与控制学报,2005,9(4):397-400. 被引量:3
  • 4顾元通,丁桦.无网格法及其最新进展[J].力学进展,2005,35(3):323-337. 被引量:40
  • 5Guilherme F Parreira, Elson J Silva, Alexandre R Fonseca, et al. The element-free galerkin method in three-dimensional electromagnetic problems[J]. IEEE Transactions on Magnetics, 2006, 42(4): 711-714. 被引量:1
  • 6Oriano Bottauseio, Mario Chiampi, Alessandra Manzin. Element-free galerkin method in eddy-current problems with ferromagnetic media[J]. IEEE Transactions on Magnetics, 2006, 42 (5): 1577-1584. 被引量:1
  • 7Kansa E J. Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics: Ⅰ [J]. Computers Math Applic, 1990, 19(8/9): 127-145. 被引量:1
  • 8Kansa E J. Muhiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics: Ⅱ[J]. Computers MathApplic, 1990, 19(8/9): 147-161. 被引量:1
  • 9Frank C, Schaback R. Convergence orders of meshless collocation methods and radial basis functions[J]. Adv Comp Math, 1997, 8(4): 381-399. 被引量:1
  • 10La Rocca La, Hernandez A, Rosales Power H. Radial basis function Hermite collocation approach for the solution of time dependent convection-diffusion problems [J ]. Engineering Analysis with Boundary Elements, 2005, 29(4):359-370. 被引量:1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部