摘要
本文讨论具有无穷时滞中立型泛函积分微分方程ddtx(t)-∫t-∞B(t,s)x(s)ds=A(t,x(t))x(t)+∫t-∞C(t,s)x(s)ds+∑i=l1gi(t,x(t-τi(t)))的周期解问题.通过巧妙的构造算子,利用线性系统的指数二分性和Kras-noselskii不动点定理得到了周期解的存在性.我们的结果推广了相关文献的主要结果.
In this paper,the periodic solution of a neutral integro-differential equation infinite delay of the following d/dt(x(t)-∫-∞^tB(t,s)x(s)ds=A(t,x(t))x(t)+∫-∞^tC(t,s)x(s)ds+^l∑i=1gi(t,x(t-τi(t)))are discussed. Some new results on existence of periodic solutions are obtained by using exponential dichotomies of linear system and Krasnoselskii's fixed theorem.
出处
《应用数学》
CSCD
北大核心
2006年第4期804-811,共8页
Mathematica Applicata
关键词
衰减记忆
周期解
时滞
指数二分性
Decay memory
Periodic solution
Delay
Exponential dichotomies