期刊文献+

一种无类标训练数据异常检测模型 被引量:2

Anomaly Detection Model with Unlabeled Training Data
下载PDF
导出
摘要 提出了一种基于无类标训练数据的异常检测方法(ADUTD),该方法克服了传统异常检测需要纯净训练数据或有类标训练数据的限制,提高了异常检测的可用性.ADUTD通过过滤掉网络连接记录属性中低频率类型值的方法,过滤掉由训练数据中的攻击记录引入的类型值,并建立正常行为的统计模型.建立模型所使用的属性不仅包括网络连接中数据包的头部字段,也包括应用层的数据.ADUTD另一个特点是按网络连接服务类型划分数据并分别建立统计模型,提高了检测模型的预测能力.用DARPA1999评估数据集所做的实验结果显示,ADUTD能有效检测网络入侵. This paper proposed a network connection based anomaly detection approach with unlabeled training data (ADUTD). It can be considered as an enhancement to traditional anomaly detection methods by building detection models from noisy training data, ADUTD exploits the property that if there are intrusions hidden in training data, they are likely to consist of some kinds of attribute values with low frequency of occurrence. Both fields of packets' header and application layer data are used as attributes for building models and detecting intrusions. Furthermore, network traffic is divided into different parts according to their service types, and models are built for each part so as to enhance the ability of detecting attacks. Empirical experiments with DARPA 1999 IDS evaluation data set show that with unlabeled noisy training data, ADUTD has compared performance with previous schemes trained with clean or labeled data, When both trained with clean data, ADUTD has higher detection rate then previous schemes,
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第10期1856-1860,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60373088)资助 国防研究基金项目(4131605)资助
关键词 异常检测 入侵检测 网络安全 无类标数据 anomaly detection intrusion detection network security unlabeled data
  • 相关文献

参考文献11

  • 1Neumann P G,Porras P A.Experience with EMERALD to date[C].In:Proceedings of USENIX Workshop on Intrusion Detection and Network Monitoring,Santa Clara,CA.,USA.,1999:73-80. 被引量:1
  • 2Lee W,Stolfo S J,Mok K W.A data mining framework for building intrusion detection models[C].In:Proceedings of the 1999 IEEE Symposium on Security and Privacy,Oakland,CA.,USA.,1999:120-132. 被引量:1
  • 3Taghi M Khoshgoftaar,Mohamed E Abushadi.Resource-sensitive intrusion detection models for network traffic[C].In:Proceedings of the Eighth IEEE International Symposium on High Assurance Systems Engineering,Tampa,Florida,USA.,2004:249-258. 被引量:1
  • 4Christopher Kruegel,Giovanni Vigna.Anomaly detection of Web-based attacks[C].In:Proceedings of the 10th ACM conference on Computer and communication security,Washington D.C.,USA.,2003:251-261. 被引量:1
  • 5Juan M Estevez-Tapiador,Pedro Garcia-Teodoro,Jesus E Diaz-Verdejo.Stochastic protocol modeling for anomaly based network intrusion detection[C].In:Proceedings of the First IEEE International Workshop on Information Assurance,Washington,DC.,USA.,2003:3-12. 被引量:1
  • 6Nahla Ben Amor,Salem Benferhat,Zied Elouedi.Naive bayes vs decision trees in intrusion detection systems[C].In:proceedings of ACM Symposium on Applied Computing,Nicosia,Cyprus,2004:420-424. 被引量:1
  • 7Christopher Krugel,Thomas Toth,Engin Kirda.Service specific anomaly detection for network intrusion detection[C].In:Proceedings of the 2002 ACM symposium on Applied computing,Madrid,Spain,2002:201-208. 被引量:1
  • 8Nahla Ben Amor,Salem Benferhat,Zied Elouedi,et al.Decision trees and qualitative possibilistic inference:application to the intrusion detection problem[C].In:Proceedings of Symbolic and Quantitative Approaches to Reasoning with Uncertainty:7th European Conference,Aalborg,Denmark,Springer-Verlag GmbH,2003:419-431. 被引量:1
  • 9Wenke Lee,Dong Xiang.Information-theoretic measures for anomaly detection[C].In:Proceedings of the IEEE Symposium on Security and Privacy,Oakland,CA.,USA.,2001,130-143. 被引量:1
  • 10Matthew V Mahoney,Philip K Chan.Learning rules for anomaly detection of hostile network traffic[C].In:Proceedings of the Third IEEE International Conference on Data Mining,Florida,USA.,2003:601-604. 被引量:1

同被引文献29

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部