期刊文献+

一种基于多概念格的分类规则融合方法 被引量:1

An amalgamating method of classification rules based on multiple concept lattices
下载PDF
导出
摘要 从多个数据源进行综合知识发现已经成为当前数据挖掘领域中的一个热点研究问题。然而,由于各数据源中数据的差异,使得从各数据源上提取出来的知识,在相互融合的时候会显示出各自的局部性,有时甚至彼此间会出现矛盾,因此,有效的知识融合方法对挖掘结果的质量是至关重要的。该文探讨了基于多概念格的分类规则挖掘,提出了一种融合不同数据源中的分类规则的方法,该方法能保证规则的完整性,即获得适用于全局的所有分类规则,给出了实验结果并加以验证。 Synthesized knowledge discovery from multiple data sources has been a hot research topic in the current field of data mining. However, the differences among sources often make the knowledge extracted from various sources appear to be local, and sometimes there is even conflict when the knowledge is amalgamated. So an effective amalgamation method is crucial to the result's quality of mining from multiple sources. In this paper, classification rules mining from multiple concept lattices is discussed, and a method of amalgamating rules is proposed, by which all rules can be gotten. Experiment results are given to verify this method.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第9期1081-1084,共4页 Journal of Hefei University of Technology:Natural Science
基金 安徽省自然科学基金资助项目(050420207) 合肥工业大学科研发展基金资助项目(050504F)
关键词 知识发现 数据挖掘 分类规则 概念格 knowledge discovery data mining classification rule concept lattice
  • 相关文献

参考文献11

  • 1Cheung D W,Han Jiawei,Ng V T,et al.A fast distributed algorithm for mining association rules[A].Proceedings of 1996 International Conference on Parallel and Distributed Information Systems,Miami Beach,Florida[C].1996.31-44. 被引量:1
  • 2Grossman R,Bailey S,Ramu A,et al.The preliminary design of papyrus:a system for high performance,distributed data mining over clusters meta-clusters and super-clusters[C].New York:AAAI Press/The MIT Press,1998.37-43. 被引量:1
  • 3Agrawal R,Shafer J C.Parallel mining of association rules:design,implementation,and experience[J].IEEE Transactions on Knowledge and Data Engineering,1996,8(6):962-969. 被引量:1
  • 4韩家卫,坎伯.数据挖掘概念与技术[M].北京:机械工业出版社,2001.16-18. 被引量:2
  • 5谢志鹏..基于概念格模型的知识发现研究[D].合肥工业大学,2001:
  • 6Shafer J,Agrawal R,Mehta M.SPRINT:a scalable parallel classifier for data mining[A].Proceedings of the 22nd International Conference on Very Large Databases (VLDB).Bombay,India[C].1996.544-555. 被引量:1
  • 7Cho V,Wuthrich B.Distributed mining of classification rules[J].Knowledge and Information,2002,4(1):1-30. 被引量:1
  • 8胡学钢.从数据库中提取知识的模型研究[D].合肥:合肥工业大学计算机与信息学院,2000. 被引量:1
  • 9Wille R.Restructuring lattice theory:an approach based on hierarchies of concepts[A].Rival I.Ordered Sets,Reidel,Dordrecht -Boston[C].1982.445-470. 被引量:1
  • 10Hu Xuegang,Zhang Yuhong.The pruning ECL for classification and the knowledge discovery based on the pruning ECL[A].CRSSC′2003,Chongqing[C].2003.31-34. 被引量:1

共引文献1

同被引文献7

  • 1李云,刘宗田,陈崚,徐晓华,程伟.多概念格的横向合并算法[J].电子学报,2004,32(11):1849-1854. 被引量:50
  • 2宾宁,李宏,陈松乔.基于SPRINT分类算法的异构分布式数据挖掘研究[J].计算机测量与控制,2005,13(1):76-78. 被引量:6
  • 3Vipin Kumar,Mahesh V Joshi.High performance data mining[C].VECPAR 2002,5th International Conference,Porto,Portugal,2002:111-125 被引量:1
  • 4Vincent Dho,Beat Wuthrich.Distributed mining of classification rules[J].Knowledge and Information.2002,4:1-30 被引量:1
  • 5Stolfo S.Jam:Java agents for meta-learning over distributed databases[C].In Proceedings third international conference on knowledge discovery and data mining Menlo Park,CA:AAAI Press,1997:74-81 被引量:1
  • 6Giannella Chris,Liu Kun,Olsen Todd,et al.Communication efficient construction of decision trees over heterogeneously distributed data[C].Proceedings of the Fourth IEEE International Conference on Data Mining,ICDM,2004:67-74 被引量:1
  • 7Hu Xuegang,Zhang Yuhong.The pruning ECL for classification and the knowledge discovery based on the Pruning ECL[C].3th international conference on Rough Sets,Fuzzy Sets,Data Mining and Granular Computing,May 2003:759-764 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部