摘要
介绍了一种利用量子行为粒子群算法(QPSO)求解矩形包络的方法。矩形包络是将二维不规则形状样片用它们的最佳包络矩形来代替,是服装排料的第一步。实验结果表明量子行为粒子群算法比粒子群算法,遗传算法能更好地解决求二维不规则形状样片的矩形包络的问题。
An improved QPSO(Quantum-behaved Particle Swarm Optimization) to solve rectangle-packing problems was proposed. The rectangle-packing is to replace two-dimensional irregular objects with their best rectangle, which is the first step of the clothing layout. The experimental results show that QPSO is better at solving the layout problem than PSO and GA(Genetic Algorithm).
出处
《计算机应用》
CSCD
北大核心
2006年第9期2068-2070,2073,共4页
journal of Computer Applications
基金
国家自然科学基金资助项目(60474030)
关键词
矩形包络
量子行为粒子群算法
粒子群算法
遗传算法
rectangle-packing
QPSO (Quantum-behaved Particle Swarm Optimization)
PSO (Particle Swarm Optimization)
GA(Genetic Algorithm)