期刊文献+

基于神经网络集成、多传感器融合的机器人对障碍物的识别 被引量:1

Mobile Robot Avoid Barrier Based on Neural Network Integration and Multi-sensor Fusion
下载PDF
导出
摘要 基于神经网络和神经网络集成理论提出了一种多传感器信息的数据融合结构,并将其用于机器人的障碍物的识别,提高了系统的识别效率,增强了系统的可靠性。通过分别搭建识别各种障碍物的子网络,以并行集成的方式把各个个体网络组合起来,可以获得一个一个高性能的识别系统。在HEBUT-Ⅰ型移动机器人上进行了验证,取得了很好的识别效果,为机器人的正确导航奠定了基础。 Since more information can be obtained and the ability of target identification can be enhanced with multi-sensor information fusion technology, thus the limitation of a single sensor system can be avoided. The paper develops a kind of structure of multi-sensor information date fusion based on Neural Network and Neural Network integration. It can improve the robustness and reliability.The simulation with the robotic multi-sensor barrier identification is also presented and discussed.
机构地区 河北工业大学
出处 《机电产品开发与创新》 2006年第4期32-34,共3页 Development & Innovation of Machinery & Electrical Products
基金 河北省自然科学基金项目(501031) 天津市自然科学基金项目(003601211)
关键词 避障 神经网络集成 多传感器 数据融舍 Neural Network Neural Network Integration Multi-sensors Fusion
  • 相关文献

参考文献10

  • 1W.Wan and D.Fraser.Multi-source Data Fusion with Multiple Selforganizing Maps.IEEE Transactions on Geoscience and Remote Sensing,1999,vol.10,no.5,pp.1344~1349. 被引量:1
  • 2K Ohshima.Sensor Fusion and Decentralized Control in Robotic Systems Ⅱ.Proceedings of SPIE 1999,vol.38 No39. 被引量:1
  • 3Y Kanayama et al.Special Issue on Data Fusion,IEEE Transactions on Geoscience and Remote Sensing,1999,vol.37,No.3. 被引量:1
  • 4Theresa Beaubouef,Frederick E.Petry,Gurdial Arora,Information-theoretic Measures of Uncertainty for Rough Sets and Rough Relational Databases,Journal of Information Sciences,1998,109:185~195. 被引量:1
  • 5MOHUA BANERJEE,SANKAR K.PAL,Roughness of a Fuzzy Set,Information and Computer Science,1996,93:235~246. 被引量:1
  • 6Sollich P,Krogh A.Learning with Ensembles:How Over-Fitting Can Be Useful.In:Touretzky D,Mozer M,Hasselmo M eds.Advances in Neural Information Processing Systems (Volume 8),Cambridge,MA:MIT Press,1996,190~196. 被引量:1
  • 7Gutta S,Wechsler H.Face Recognition Using Hybrid Classifier Systems.In:IEEE International Conference on Neural Networks,NY:IEEE,1996,1017~102. 被引量:1
  • 8Dubois,Susan R etc.Autoregressive Model Approach to Two-Dimensional Shape Classification.IEEE Transactions on Pattern Analysis and Machine Intelligence,v PAMI-8,n 1,Jan,1986,p55~66. 被引量:1
  • 9Gupta,Lalit etc.Neural network approach to robust shape classification.Pattern Recognition,v23,n6,1990,p563~568. 被引量:1
  • 10戈新良..基于多种传感器信息融合的移动机器人的环境辨识[D].河北工业大学,2003:

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部