期刊文献+

基于关联图的频集快速发现算法 被引量:1

Conjunction graph-based frequent-sets fast finding algorithm
下载PDF
导出
摘要 关联规则挖掘技术能够从复杂数据中发现有意义的关联知识,但是目前还没有有效的执行算法,为了提高频集发现问题中的存在的执行效率问题,引入了基于关联图的数据表示技术,提出了基于关联图的频集快速发现算法(conjunctiongraph-basedfrequent-setsfastfindingalgorithm,CGFF),根据关联图的结构特性,有效地实现了频集发现的合理剪枝问题,大大提高了执行效率,最后通过实验证明频集快速发现算法是行之有效的。 There are no efficient algorithms to mining correlation rules in the field ofdata mining. To enhance the efficiency ofprocessing to find frequent sets, a novel algorithm for mining complete frequent itemsets is presented. This algorithm is referred to as the conjunction graph-based frequent-sets fast finding algorithm from hereon, In this algorithm, the graph-based pruning to produce frequent patterns is employed. Experimental data show that the CGFF algorithm outperforms than others.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第17期3136-3139,共4页 Computer Engineering and Design
基金 广东省科技基金项目(2005B10101033 2004A10202001)。
关键词 数据挖掘 关联规则 频集 关联图 关联规则挖掘 data mining correlation rules frequent itemsets conjunction graph correlation rules mining
  • 相关文献

参考文献8

  • 1Lei Wen,Minqiang Li.A new association rules mining algorithms based on directed itemsets graph[J].LNAI,2003,2639(1):660-663. 被引量:1
  • 2Dzeroski S,Raedt L D,Multi-relational data mining:The current frontiers[C].Preceding ECML/PKDD,ACM press,2002.1-2. 被引量:1
  • 3Kuramochi M,Karypis G.Frequent subgraph discovery[C].San Jose,CA:ICDM'01,2001.313-320. 被引量:1
  • 4Akihiro Inokuchi,Takashi Washio,Hiroshi Motoda.An aprioribased algorithm for mining frequent substructures from graph data[J].LNAI,2000,1910(1):13-23. 被引量:1
  • 5Chen Wang,Wei Wang,Jian Pei,et al.Scalable mining of large disk-based graph databases[C].Seattle,Washington,USA:KDD'04,2004.316-325. 被引量:1
  • 6Zaki M J,Gouda K.Fast vertical mining using diffsets[C].Washington,D C:Proceedings of the Nineth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,New York:ACM Press,2003.326-335. 被引量:1
  • 7Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C].Proceedings of ACM SIGMOD ICMD,ACM Press,2000.1-12. 被引量:1
  • 8Song Mingjun,Rajasekaran S.Finding frequent itemsets by transaction mapping[C].New Mexico,USA:ACM Symposium on Applied Computing,ACM Press,2005.488-492. 被引量:1

同被引文献9

  • 1郑玲霞,李大学,马万里.基于有向图的关联规则算法[J].重庆邮电学院学报(自然科学版),2005,17(4):495-498. 被引量:5
  • 2陈耿,朱玉全,杨鹤标,陆介平,宋余庆,孙志挥.关联规则挖掘中若干关键技术的研究[J].计算机研究与发展,2005,42(10):1785-1789. 被引量:62
  • 3黄龙军,章志明,段隆振,黄明和.一种基于无向项集图的频繁项集挖掘算法[J].计算机工程与应用,2006,42(16):177-179. 被引量:3
  • 4Han Jia-wei,Pei Jian,Yin Yi-wen.Mining frequent patterns without candidate generation[A].Proceedings of the 2000 ACM-SIGMOD International Conference on Management of Data[C].Dallas,Texas,US:ACM Press,2000.1-12. 被引量:1
  • 5Burdick D,Calimlim M,Gehrke J.Mafia:A maximal frequent itemset algorithm for transactional databases[A].Proceedings of the 17th International Conference on Data Engineering[C].Heidelberg,Germany:IEEE Press,2001.443-452. 被引量:1
  • 6Guanling Lee,K L Lee,Arbee L P Chen.Efficient graph-based algorithms for discovering and maintaining association rules in large databases[J].Knowledge and Information Systems,2001,3(3):338-355. 被引量:1
  • 7Roberto J,Bayardo Jr.Efficiently mining long patterns from databases[A].Proceedings of the 1998 ACM-SIGMOD International Conference on Management of Data[C].Seattle,Washington,US:ACM Press,1998.85-93. 被引量:1
  • 8Carter C L,Hamilton H J.Efficient attribute-oriented algorithms for knowledge discovery from large databases[J].IEEE Transactions on Knowledge and Data Engineering,1998,10(2):193-208. 被引量:1
  • 9Robert J Hilderman,Howard J Hamilton,Nick Cercone.Data mining in large databases using domain generalization graphs[J].Intelligent Information Systems,1999,13(3):195-234. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部