期刊文献+

混沌粒子群优化算法及其在平面选址问题上的应用 被引量:4

Particle Swarm Optimization Algorithm with Chaos and Its Application in Planar Location Problem
下载PDF
导出
摘要 通过引入混沌来影响粒子速度的更新,构造出一种混沌粒子群优化算法.其主要思想是用混沌迭代引导个体进一步优化,从而避免群体陷入局部最优,而且收敛速度得到加快.通过对三个测试函数以及平面选址问题的求解,验证该算法具有非常好的性能. A kind of particle swarm optimization algorithm with chaos is constructed by adding chaos to influence the update of the velocities of particles. The main idea is to guide individual further optimization by chaos iterations. The technique can either avoid that the population trap into the local optimum or accelerate the convergence rate. It has better application in planar location problem.
出处 《河南科学》 2006年第5期707-710,共4页 Henan Science
关键词 粒子群算法 混沌 随机搜索 测试函数 平面选址 particle swarm algorithm chaos stochastic searching test function planar location problem
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization [C]//. In IEEE International Conference on Neural Network. Perth,Australia, IEEE Service Center, Piscataway, NJ, 1995, 1942-1948. 被引量:1
  • 2Shi Y, Eberhart R. Empirical study of particle swarm optimization [C]//. In Proceedings of the 1999 Congress on Evolutionary Computation. Washington, DC, USA, IEEE Service Center, Piscataway, 1999, 1945-1950. 被引量:1
  • 3Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [C]//. In Proceedings of IEEE Conference on Evolutionary Computation, Seoul, Korea, IEEE service center, Piscataway, N J, 2001, 101-106. 被引量:1
  • 4Lovbjerg M, Rasmussen T, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations[C]//. In Proceedings of the third Genetic and Evolutionary Computation Conference, San Francisco, USA, Morgan Kaufmann Publishers, 2001,469-476. 被引量:1
  • 5Ciuprina G,Loan D,Munteanu I. Use of intelligent-particle swarm optimization in electromagnetics [J]. IEEE Trans on Magnetics, 2002, 38 (2) :1037-1040. 被引量:1
  • 6Van den Bergh F, Engelbrecht A. Training product unit networks using cooperative particle swarm optimizers[C]//. In Proceedings of the third Genetic and Evolutionary Computation Conference, San Francisco,USA, Morgan Kaufmann Publishers,2001,126-131. 被引量:1
  • 7Shi Y, Eberhart R. A modified particle swarm optimizer [C]//. In Proceedings of IEEE International Conference of Evolutionary Computation. Anchorage, Alaska, IEEE Press, Piscataway, N J, 1998, 69-73. 被引量:1
  • 8邱模杰,马 良.约束平面选址问题的蚂蚁算法[J].上海理工大学学报,2000,22(3):217-220. 被引量:14

二级参考文献25

  • 1马良.中国144城市TSP的蚂蚁搜索算法[J].计算机应用研究,2000,17(1):36-37. 被引量:6
  • 2Chakrabarty N R,Chaudhuri P K.Geometrical solution to some planar constrained minimax problem involving the weighted rectilinear metric[J].AsiaPacific Journal of Operational Research,1992,9(2):135~144 被引量:1
  • 3Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[A].Proc of the First European Conf on Artificial Life[C].Paris,France:Elsevier Publishing,1991:134~142 被引量:1
  • 4Colorni A,Dorigo M,Maniezzo V.An investigation of some properties of an ant algorithm[A].Proc of the Parallel Problem Solving from Nature Conference (PPSN'92)[C].Brussels,Belgium:Elsevier Publishing,1992:509~520 被引量:1
  • 5Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].IEEE Trans on Systems,Man,and Cybernetics,1996,26(1):29~41 被引量:1
  • 6Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the travelling salesman problem[J].IEEE Trans on Evolutionary Computation,1997,1(1):53~66 被引量:1
  • 7Gambardella L M,Dorigo M.Ant-Q:a reinforcement learning approach to the travelling salesman problem[A].Proc of the 12th Int Conf on Machine Learning[C].Tahoe City,CA:Morgan Kaufman,1995:252~260 被引量:1
  • 8Stutzle T,Hoos H.The MAX-MIN ant system and local search for the travelling salesman problem[A].Proc of ICEC'97-1997 IEEE 4th Int Conf onEvolutionary Computation[C].IEEE Press,1997:308~313 被引量:1
  • 9Colorni A.Ant system for job-shop scheduling[J].JORBEL,1994,34(1):39~53 被引量:1
  • 10Costa D,Hertz A.Ants can colour graphs[J].J Opnl Res Soc,1997,48(3):295~305 被引量:1

共引文献13

同被引文献33

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部