期刊文献+

拓扑空间中关于QEP(T,A,f)平衡解的存在性定理

Existence of solutions for QEP(T,A,f) in topological spaces
下载PDF
导出
摘要 在非紧的一般拓扑空间中证明了一个Fan-Browder型不动点定理;应用此不动点定理,在非紧的一般拓扑空间中证明了关于QEP(T,A,f)解的存在性定理;推广和改进了已有文献中的一些重要结论. In this paper , a new Fan - Browder type fixed point theorem is proved under noncompact setting of general topological spaces. By applying the fixed point theorem, several new existence theorems of solutions for equlibrium problems are proved under noncompact setting of topological spaces. These theorems improve and generalize a number of important known results in literature.
作者 张义萍
出处 《重庆工商大学学报(自然科学版)》 2006年第4期334-336,共3页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 QEP(T A f) 存在性 拓扑空间 QEP( T, A, f) existence topological spaces
  • 相关文献

参考文献8

  • 1CUBIOTTI P. Existence of solution for lower semicontinuous quasi - equilibrium problems [ J ]. Computers Math. Applic,1995(30) :11 -22 被引量:1
  • 2DING X P. Existence of solutions for quasi -equilibrium problems[ J]. Sichuan Normal univ, 1998(21 ) : 603 -608 被引量:1
  • 3LIN L J, PARK S. On some generalized quasi -equilibrium problems[J]. Math. Anal. Appl, 1998(224) : 167 -181 被引量:1
  • 4DING X P. New H - KKM theorems and their applicatinos to geometric property, coincidence theorems, minimax inequality and maximal elements[J]. Indian. J Pure Appl. Math. Lett, 1999(12) : 99 -105 被引量:1
  • 5DING X P. Coincidence theorems in topological spaces and their applications[J]. J Math. Anal. Appl, 2003(285) : 679-690 被引量:1
  • 6DENG L, XIA X. Generalized R- KKM theorems in topological space and their applications [ J ]. Math. Anal. Appl, 2003 (285) : 679 - 690 被引量:1
  • 7LIN L J, ANSARI Q H. Collective fixed points and maximal elements with applications to abstract economies[J]. J Math. Anal. Appl, 2004(296) : 455 -472 被引量:1
  • 8DING X P. Existence of solutions for quasi -equilibrium problems in noncompact topological spaces[J]. Computers and Mathematics with Applications, 2000(39) : 13 -21 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部