摘要
极化目标分解是从极化SAR数据中提取目标特征的重要方法,可以将其概括为两大类:基于S inc lair矩阵的相干目标分解和基于Mueller矩阵、相干矩阵、协方差矩阵的部分相干目标分解.利用相干目标分解中的基于Pau li矩阵分解法、Krogager分解法和Cam eron分解法,对实测极化SAR数据进行分类实验,结果表明极化目标分解对于从极化SAR数据中提取目标特征,进而对其进行分类是可行和有效的.
Polarization target decomposition is an important way to extract target properties from polarimetric SAR data. It can be generalized to two kinds: coherent target decomposition (CTD) based on Sinclair matrix and part coherent target decomposition (PCTD) based on Mueller matrix, coherent matrix, covariance matrix. By Pauli matrix-based decomposition, Krogager decomposition and Cameron decomposition, polarimetric SAR data is applied to classification experiment. The results indicate polarization target decomposition is feasible and efficient to extract target properties from polarimetric SAR data and classify it.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2006年第5期33-36,共4页
Journal of Anhui University(Natural Science Edition)
关键词
相干目标分解
极化
目标分类
最小距离分类器
coherent target decomposition
polarization
target classification
minimum distance classfier