摘要
通过分析现有文献,认为4种两参数的物态方程在高压物理研究中较为流行,它们是Vinet、Baonza、Morse和Born-Meyer(BM)方程。将这4种方程用于拟合50种材料的实验压缩数据,得出了零压下压缩模量及其一阶压力导数的优化取值,并计算了4种方程的平均压力误差。结果表明,Morse方程的精度最高,对50种材料的平均拟合误差为0.557 6%;BM方程次之,平均误差为0.615 1%;Vinet和Baonza方程的误差大一些,分别为0.788 9%和0.833 3%。对8种典型材料计算了压力误差随压强变化的曲线,所得结果与平均误差的趋势一致,也是Morse方程的精度最高。在宽广压力范围的高压物态方程研究中,推荐使用Morse方程。
It is pointed out that four equations of state are popular in literature,including Morse,Vinet, Born-Meyer (BM) and Baonza equations of state. The four equations have been applied to fit the experimental compression data of 50 materials. The optimized values of bulk modulus and its first-order pressure derivative at zero-pressure have been determined, and the average errors are compared. The results show that for all materials the Morse equation gives the best results with average error 0. 5576%,BM, Vinet and Baonza equations subsequently give inferior results with average errors 0. 615 1% ,0. 788 9% and 0. 833 3% ,respectively. For materials at wide pressure range,we recommend the Morse equation,but at middle and low pressure ranges,we recommend the Baonza equation as it can be expressed as both pressure analytic form and volume analytic form.
出处
《高压物理学报》
EI
CAS
CSCD
北大核心
2006年第3期313-321,共9页
Chinese Journal of High Pressure Physics
基金
中国工程物理研究院联合基金(10476007)
关键词
普适物态方程
体积模量及其压力导数
高压压缩曲线
压力误差
universal equation of state,bulk modulus and its derivative with respect to pressure
compression curve at high pressure
error of pressure