期刊文献+

一种非正交复小波核函数及其非线性参数辨识应用 被引量:5

A Kind of Non-orthogonal Complex Wavelet Kernel Function and Its Application in Nonlinear System Parameters Identification
下载PDF
导出
摘要 指出了非线性动态信号参数辨识的重要性;分析了目前采用的方法的不足;对非正交复Morlet小波满足Mercy条件和再生性的命题作了证明;用复Morlet小波构建出一种核函数,与主分量分析方法相结合,对非线性动态信号进行参数辨识和预测;仿真结果验证了该方法的正确性和有效性,表明该方法具有较好的理论价值和实用价值。 The important value of non-linear dynamical signal parameters identificaton was pointed. The shortcomings of current methods were analyzed, It was provedthat non-orthogonal complex Morlet wavelet could satisfy Mercy Condition and have reproduction character in Hilbert Space. A kind of special kernel function was built, which was named Non-orthogonal Complex Morlet Wavelet Kernel Function, combined with Principal Component Analysis (PCA), and identified parameters and forcasted future information of non-linear dynamic signal. Contrast experiment results show that this kind of kernel function seems to be the most promising one and has some more applied value in this area.
出处 《系统仿真学报》 CAS CSCD 北大核心 2006年第9期2550-2554,共5页 Journal of System Simulation
基金 国家自然科学基金(10576027) 博士点基金(20040613013)
关键词 非正交复Morlet小波 主分量分析 核函数方法 非线性动态信号 参数辨识 Non-orthogonal Complex Morlet Wavelet Principal Component Analysis (PCA) Kernel Function Method Nonlinear Dynamical Signal Parameter Identification
  • 相关文献

参考文献14

  • 1李元诚,李波,方廷健.基于小波支持向量机的非线性组合预测方法研究[J].信息与控制,2004,33(3):303-306. 被引量:26
  • 2Gustavo A Hirchoren. Estimation of fractional brownian motion with multi-resolution kalman filter banks [J]. IEEE Transaction on Signal Processing (S1053-587x), 1999, 47(5): 143 1- 1434. 被引量:1
  • 3Sergio M Savaresi, Fabio Previdi, Alessandro Dester, et al. Modeling,Identification, and Analysis of Limit-Cycling Pitch and Heave Dynamics in an ROV [J]. IEEE Journal of Oceanic Engineering(S0364-9059), 2004, 29(2): 407-417. 被引量:1
  • 4Jan van Helvoirt, Brain de Jager, Maarten Steinbuch, et al. Stability Parameter Identification for a Centrifugal Compression System [C]//43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004, 12: 3400-3405. 被引量:1
  • 5王雷,陈宗海.一种多神经网络混合模型的学习算法研究[J].系统仿真学报,2004,16(12):2680-2682. 被引量:4
  • 6Jing Xu, Qing-chun Meng, Dong-ming Zhou, et al. A Model Parameters Identification Method Based on Recurrent Neural Networks [C]//Proceedings of 3rd International Conf. on Machine Learning and Cybernetics. Shanghai, 2004.8: 3207-3212. 被引量:1
  • 7Dong-hai Zhai, Li Li, Fan Jin, Fuzzy Neural Network for Nonlinear Systems Model Identification [C]// Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Kobe, Japan, 2003.7: 1282-1287. 被引量:1
  • 8Vapnik V N. Statistical Learning Theory[M]. New York: Springer-Verlag, 2000. 被引量:1
  • 9Charles K C. An Introduction to Wavelets [M]. USA: Academic Press,1997.1: Chapter 1 and Chapter 3. 被引量:1
  • 10J A K Suykens, T Van Gestel, J Vandewalle, et al. A Support Vector Machine Formulation to PCA Analysis and Its Kernel Version [J].IEEE Transaction on Neural Networks(S1045-9227), 2003, 14(2):447-410. 被引量:1

二级参考文献35

  • 1张国平.B—G组合预测理论剖析[J].预测,1988,7(5):22-25. 被引量:27
  • 2Vapnik V N. Statistical learning theory[M]. New York, 1998. 被引量:1
  • 3Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245. 被引量:1
  • 4Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105. 被引量:1
  • 5Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471. 被引量:1
  • 6Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861. 被引量:1
  • 7Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195. 被引量:1
  • 8Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198. 被引量:1
  • 9Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285. 被引量:1
  • 10Laskov P. Feasible direction decomposition algorithms for training support vector machines[J]. Machine Learning, 2002, 46(1): 315-349. 被引量:1

共引文献165

同被引文献45

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部