期刊文献+

基于支持向量机分类算法的湖泊水质评价研究 被引量:23

Evaluation of Lake Water Quality Based on Classification Algorithms of Support Vector Machines
下载PDF
导出
摘要 支持向量机(SVM)是由Vapnik等人提出的建立在统计学习理论基础上的一种小样本机器学习方法,最初用于解决二分类问题。由于使用结构风险最小化原则代替经验风险最小化原则,使它较好地解决了小样本情况下的学习问题。又由于采用了核函数思想,使它将非线性问题转化为线性问题来解决,降低了算法的复杂度。利用支持向量机多类分类算法,构建湖泊水环境评价模型。实验结果表明,该方法能够正确地对湖泊水环境质量进行分类评价。 Support vector machines (SVM) were developed from the machine learning theory of small samples based on statistical learning theory (SLT) by Vapnik et al, which were originally designed for binary classification problems. It can solve small-sample learning problems better by using structural risk minimization in place of experiential risk minimization. Moreover, SVM can convert a nonlinear learning problem into a linear learning problem in order to reduce the algorithm complexity by using the kernel function concept. A multi-class classification method of SVM is applied to lake water quality assessment. A case study shows that the method is reliable in the classification and evaluation of lake water quality.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2006年第4期570-573,共4页 Journal of Jilin University:Earth Science Edition
基金 国家"973"项目(G1999045705)
关键词 湖泊 支持向量机 分类算法 水质评价 lake water environment support vector machines classification algorithms water quality evaluation
  • 相关文献

参考文献7

二级参考文献41

共引文献2375

同被引文献222

引证文献23

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部