期刊文献+

分布式并行数据挖掘计算框架及其算法研究 被引量:9

Investigation of Distributed and Parallel Data Mining Calculating Architecture and Algorithms
下载PDF
导出
摘要 为了提供一个灵活可扩展的计算平台进行高效的挖掘计算,提出了一种应用于分布和并行环境的数据挖掘计算框架和相应的算法。通过分析关联规则挖掘理论和以往算法的优缺点,建立一种分布式并行数据挖掘的计算框架,并给出相应的求解算法。实例分析表明该计算框架能够减少节点间的通信开销,保持了良好的可扩展性;挖掘算法则利用本地节点动态有序集合枚举树生成方法代替数据库节省了本地空间的占用,大大提高了查找的计算效率。 In order to provide a flexible and patulous calculating platform and execute high efficiency data mining, a calculating architecture and algorithms of data mining are presented to apply in distributed and parallel environment. The distributed and parallel calculating architecture of data mining and the corresponding algorithms are established by analyzing mining theory of association rule and merit & shortcoming of former algorithms. Examples show that the calculating architecture can reduce overhead traffic, and keep a favorable expansibility. The algorithms save occupation of local space by using the generating method of dynamic order set enumerate trees in local nodes to replace database, and the seeking efficiency is improved greatly.
作者 王轶 达新宇
出处 《微电子学与计算机》 CSCD 北大核心 2006年第9期223-225,共3页 Microelectronics & Computer
基金 国家自然科学基金项目(60473083) "863"高技术项目(2005AA103110-2)
关键词 数据挖掘 关联规则 项集 分布式并行结构 Data mining, Association rule, Item-set, Distributed and parallel structure
  • 相关文献

参考文献6

  • 1J W Han,M Kamber.范明,孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2006 被引量:1
  • 2张云涛,龚玲著..数据挖掘原理与技术[M].北京:电子工业出版社,2004:238.
  • 3李雄飞,苑森淼,王爱军,郇丹丹.基于项目属性的相联规则提取[J].计算机学报,2002,25(12):1421-1427. 被引量:3
  • 4R Agrawal.Fast algorithms for mining association rules[A].In Proc.1994 Int.Conf.Very Large Dataases[C].Santiago:1994:467~499. 被引量:1
  • 5R Agrawal,A Gupta,S Sarawagi.Modeling multidimensional databases[A].In Proc.1997 Int.Conf.Data Engineering[C].Birmingham:1997:232~243 被引量:1
  • 6万仁霞,陈瑞典.一种改进的Apriori算法[J].福州大学学报(自然科学版),2005,33(2):282-284. 被引量:4

二级参考文献19

  • 1Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc 20th VLDB Conference, Santiago, Chile, 1994. 487-499 被引量:1
  • 2Ozden B, Ramaswamy S, Silberschatz A. Cyclic associationrules. In: Proc 14th International conference on Data Engineer ing,Orlando,FL, 1998. 412-421 被引量:1
  • 3Ramaswamy S, Mahajan S, Silberschatz A. On the discovery of interesting patterns in association rules. In: Proc 24th Interna tional Conference on Very Large Data Bases, New York,USA, 1998. 368-379 被引量:1
  • 4Bayardo R, Agrawal R. Mining the most interesting rules. In: Proc KDD-99,San Diego,1999. 112-121 被引量:1
  • 5Bing Liu, Wynne Hsu, Yiming Ma. Mining association rules with multiple minimum supports. In: Proc International Confer ence on Knowledge Discovery and Data Mining, San Diego, USA, 1999. 125-134 被引量:1
  • 6Lee W, Stolfo S J, Mok K W. Mining audit data to build intrusion detection models. In: Proc KDD-98, New York, USA, 1998. 106-110 被引量:1
  • 7Han J, Fu Y. Discovery of multiple level association rules from large databases. In: Proc International Conference on VeryLarge Data Bases, Zurich,Switzerl, 1995. 420-431 被引量:1
  • 8Park J S, Chen M S, Yu P S. An effective hash-based algo rithm for mining association rules. In: Proc ACM-SIGMOD International Conference on Management of Data, San Jose, CA, 1995. 175-186 被引量:1
  • 9JiaweiHan Dataminin 范明.conceptsandtechniques[M],MichelineKamber,孟小峰等译[M].北京:机械工业出版社,2001.150-151,158. 被引量:1
  • 10Park J S, Chen M S, Yu P S. An effective hash - based algorithm for mining association rules[A]. In Proc 1995 ACM - SIGMOD Int Conf Management of Data(SIGMOD'95)[C]. 1995. 175-186. 被引量:1

共引文献5

同被引文献61

引证文献9

二级引证文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部