摘要
研究了具有变动边界的一维区域上的双曲型方程的初边值问题;提出一类全离散有限元逼近格式,并证明了格式的稳定性。应用空间变量代换、引入椭圆投影及其他微分方程先验估计技巧,得到了最优阶的L^2模及H^1模收敛结果。
The initial-boundary value problem for hyperbolic equation in one-dimensional domain with moving boundary is studied. The discrete time finite element approximation is suggested, and its stability is proved. By changing space variable, introducing elliptic projection and using other priori estimate technique for differential equation , the optimal L2-norm and H1-norm convergence results are obtained.
出处
《山东大学学报(自然科学版)》
CSCD
1996年第4期375-383,共9页
Journal of Shandong University(Natural Science Edition)
基金
国家教委博士点基金资助项目
关键词
双曲型方程
全离散有限元
误差估计
数值分析
hyperbolic equation
moving boundary
discrete time finite element
error estimate