期刊文献+

MPS水流数学模型在冲击压力计算中的应用 被引量:2

Application of a Numerical Flow Model Based on MPS Method in the Calculation of Impact Pressure
下载PDF
导出
摘要 通过引入SPH(smoothed particle hydrodynamics)方法中的样条函数作为核子函数,并进一步修正扩散模型及梯度模型的计算公式,对已有MPS(moving particle semi-implicit)水流数学模型进行了改进.将该模型应用于垂向二维水柱倒塌过程计算,结合直立挡板的冲击压力过程实测结果,探讨了水流黏滞系数和摩阻项对直立挡板压力过程计算结果的影响,发现黏滞系数影响峰型的尖锐度,摩阻项影响压力过程的相位;通过适当选取黏滞系数和摩阻系数,获得了与实测结果一致的压力数值计算结果。 Moving particle semi-implicit (MPS) flow model is improved by introduction of the spline function used in the smoothed particle hydrodynamics (SPH) model as the kernel function and some modifications for the diffusion and gradient submodels. The improved model is applied to the simulation of the collapsing process of vertical 2D water columns. Simulation results of the pressure process on the right vertical board are discussed after comparing with the measured ones. It is found that the viscosity coefficient affects the sharpness of the pressure peak and the friction term affects the phase of the pressure process. Good agreement between simulated and measured results of the pressure process can be achieved by adjusting the values of the viscosity coefficient and the friction term.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2006年第9期1031-1036,共6页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金(50479047).
关键词 MPS方法 水柱倒塌 核子函数 冲击压力 黏滞系数 摩阻项 MPS method collapse of water column kernel function impact pressure viscosity coefficient friction term
  • 相关文献

参考文献9

  • 1李绍武,尹振军.N-S方程的数值解法及其在水波动力学中应用的综述[J].海洋通报,2004,23(4):79-85. 被引量:13
  • 2刘儒勋,舒其望著..计算流体力学的若干新方法[M].北京:科学出版社,2003:244.
  • 3Koshizuka S, Tamako H, Oka Y. A particle method for incompressible viscous flow with fluid fragmentation[J ]. Computational Fluid Dynamics Journal, 1995, 4( 1 ) : 29-46. 被引量:1
  • 4Koshlzuka S, Tamako H. Moving-partlcle semi-impllcit method for fragmentation of incompressible fluid[ J ]. Nuclear Science Engineering, 1996, 123:421-434. 被引量:1
  • 5Lo E Y M, Shao S D. Simulation of near-shore solitary wave mechanics by an incompressible SPH method[J]. Applied Ocean Research, 2002, 24: 275-286. 被引量:1
  • 6Shao S D, Lo E Y M. Incompressible SPH method for simulation Newtonian and non-Newtonian flows with a free surface[ J ]. Advances in Water Resources, 2003, 26:787-800. 被引量:1
  • 7李绍武,尹振军.无网格数值方法在结构物水动力研究中的应用[J].水科学进展,2004,15(6):739-744. 被引量:9
  • 8Yoon H Y, Koshizuka S, Oka Y. Direct calculation of bubble growth, departure, and rise in nucleate pool boiling[ J].International Journal of Multiphase Flow, 2001 , 27 ( 2 ) :277-298. 被引量:1
  • 9Gotoh H, Sakai T. Lagrangian simulation of breaking waves using particle method [ J ]. Coastal Engineering Journal,1999, 41(3/4) : 303-326. 被引量:1

二级参考文献52

  • 1Hirt C W, Nichols B D. Volume of fluid (VOF) method for dynamics of free boundaries [J]. Journal of Computational Physics,1981, 39: 201-225. 被引量:1
  • 2Hirt C W, Shannon J P. Free-surface stress conditions for incompressible flow calculations [J]. Journal of Computational Physics, 1968, 2: 403-411. 被引量:1
  • 3Miyata H, Finite difference simulation of breaking waves [J], Journal of Computational Physics, 1986, 65: 179-214. 被引量:1
  • 4Sakai T, Mizutani T, Tanaka T. Vortex formation in plunging breaker [C]. Proceedings of the 20th International Conference on Coastal Engineering, ASCE, 1986, 711-723. 被引量:1
  • 5Chorin A J. Numerical solution of the Navier-Stokes equations [J]. Maths Computational, 1968, 22: 745-762. 被引量:1
  • 6Hirt C W, Nichols B D, Romero N C. SOLA-A numerical solution algorithm for transient fluid flows [R] Los Alamos Scientific Laboratory report, 1975, LA-5852. 被引量:1
  • 7Kothe D B, Mjoleness R C. RIPPLE: A computer program for incompressible flows with free surface [D]. Los Alamos National Laboratory, 1991, LS- 12007-MS. 被引量:1
  • 8Liu P, Lin P. A numerical model for breaking wave: the volume of fluid method [R]. Research Report No. CACR-97-02,Center for Applied Coastal Research, Ocean Engineering Laboratory, University of Delaware, Newark, Delaware, 1997,19716. 被引量:1
  • 9Youngs D L. Time-dependent multi-material flow with large fluid distortion [M]. Numerical Methods for Fluid Dynamics,Morton K W, Baines M J, Editors, Academic press, New York, 1982. 被引量:1
  • 10Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow [J]. Journal of Computational Physics, 1994, 114: 146-159. 被引量:1

共引文献19

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部