期刊文献+

基于适应加权非对称AdaBoost HMM的三维模型分类算法 被引量:4

3D model classification based on adaptive-weighted asymmetric AdaBoost hidden Markov models
下载PDF
导出
摘要 针对三维模型的分类问题,提出了一种适应性加权非对称AdaBoost隐马尔克夫模型(HMM)分类算法.算法中提出了由三维模型表面的绝对法向量表示的两种新特征,将经过归一化和姿态调整的三维模型划分为若干部分,各部分对应HMM的一个状态,对各部分提取特征并用主成分分析(PCA)降维,对模型的4种特征对应的弱分类器使用非对称AdaBoost算法进行boosting.HMM的结构及参数初始值由模型姿势调整的可能形式及观测顺序确定,训练过程中参数用期望最大化方法计算,最后使用加权相似度计算对三维模型分类.分析及试验结果表明,与基于分布函数的分类算法相比,该算法明显提高了正确率.适应性加权后,分类正确率可进一步提高. An adaptive-weighted asymmetric AdaBoost hidden Markov models (HMM) classification method was proposed for 3D model classification. Two new types of features embedded in absolute normal direction of surface were proposed to describe 3D models in the method. A model was split into several parts after normalization and pose adjusting, and each part formed a state of a HMM. Features were extracted from each part, and the dimension of features was reduced by principal component analysis (PCA). Asym metric AdaBoost was introduced to boost weak classifiers corresponding to 4 types of features. The structure and initial parameters of HMMs were determined by different possibilities of pose adjusting and parameters were estimated using expected maximization algorithm. The class label of a test model was determined by using weighted similarity calculations. Analysis and experimental results showed that the method can gain much higher classification accuracy than the classification method based on distribution function. The classification accuracy can be even improved letting weights adapt with test models.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第8期1300-1305,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60273056) 国家"863"高技术研究发展计划资助项目(2003AA411021)
关键词 三维模型分类 隐马尔克夫模型 非对称Adaboost 3D model classification hidden Markov model (HMM) asymmetric AdaBoost
  • 相关文献

参考文献9

  • 1FUNKHOUSER T,KIM P,KAZHDAN M,et al.A search engine for 3D models[J].ACM Transactions on Graphics,2003,22(1):83-105. 被引量:1
  • 2YU M,ATMOSUKARTO I,LEOW W K,et al.3D model retrieval with morphing-based geometric and topological feature maps[C]∥Proceeding of 2003 IEEE Conference on Computer Vision and Pattern Recognition.Nice,France:CVPR,2003:656-661. 被引量:1
  • 3肖俊,吴飞,庄越挺,张引.基于支持向量机与细节层次的三维地形识别与检索[J].计算机辅助设计与图形学学报,2003,15(4):410-415. 被引量:5
  • 4潘翔,张引,张三元,叶修梓.基于子块的三维网格模型检索[J].浙江大学学报(工学版),2004,38(12):1575-1578. 被引量:4
  • 5LIU X,CHENG T.Video-based face recognition using adaptive hidden Markov models[C]∥Proceeding of Ninth IEEE Conference on Computer Vision and Pattern Recognition.Nice,France:CVPR,2003:340-345. 被引量:1
  • 6FREUND Y,SCHAPIRE R E.A decision theoretic generalization of on-line learning and application to boosting[J].Journal of Computer and System Science,1995,55(1):119-139. 被引量:1
  • 7YIN P,ESSA I,REHG J M.Asymmetrically boosted HMM for speech reading[C]∥Proceeding of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington DC:CVRP,2004:755-761. 被引量:1
  • 8OHBUCHI R,TAKEI T.Shape similarity comparison of 3D models using alpha shapes[C]∥Proceeding of the 11th Pacific Conference on Computer Graphics and Applications.Canmore,Canada:PG,2003:293-302. 被引量:1
  • 9OSADA R,FUNKHOUSER T,CHAZELLE B,et al.Shape distributions[J].ACM Transactions on Graphics,2002,21(4):93-101. 被引量:1

二级参考文献31

  • 1Foote J T. An overview of audio information retrieval [ J ] .Multimedia Systems, 1999, 7( 1 ) : 2-- 11. 被引量:1
  • 2Marc Levoy. The digital Michelangelo project [ A] . In:Proceedings of the 2nd International Conference on 3D Digital Imaging and Modeling, Ottawa, Canada, 1999. 2--13. 被引量:1
  • 3Hyewon Seo, Nadia Magnenat-Thalmarm. LOD management on animating face models[A]. In: Proceedings of IEEE Virtual Reality 2000, New Brunswick, NJ, 2000. 161-168. 被引量:1
  • 4Peter Lindstrom,David Koller, William Ribarsky, et al. Realtime, continuous level of detail rendering of height fields[ A] .In: Computer Graphics Proceedings, Annual Conference Series,ACM SIGGRAPH, New Orleans, Louisiana, 1996. 109--118. 被引量:1
  • 5David C Taylor, William A Barrett. An algorithm for continuous resolution polygonalizations of a discrete surface [ A] . In:Proceedings of Graphics Interface' 94, Banff, Alberta, 1994.33 -- 42. 被引量:1
  • 6Reeves A P, Prokop R J, Andrews S E, et al. Three-dimensional shape analysis using moments and Fourier descriptors[A] . In: Proceedings of the 7th International Conference on Pattern Recognition, Montreal, Quebec, 1984.447-- 450. 被引量:1
  • 7M K Hu. Visual pattern recognition by moment invariants[J].IEEE Transactions on Information Theory, 1962, 8(2) : 179--187. 被引量:1
  • 8A G Mamistvalov. On the fundamental theorem of moment invariants[J] . Bull. Acad. Science Georgian SSR, 1970, 59(2) : 297--300. 被引量:1
  • 9T H Reiss. The revised fundamental theorem of moment in variants[ J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8): 830--834. 被引量:1
  • 10M Turk, A Pentland. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3( 1 ) : 71 -- 86. 被引量:1

共引文献7

同被引文献43

  • 1李晓兵,孙晓丽,夏良正.基于小波矩特征的小波神经网络目标识别[J].东南大学学报(自然科学版),2006,36(S1):90-93. 被引量:5
  • 2杨育彬,林珲,朱庆.基于内容的三维模型检索综述[J].计算机学报,2004,27(10):1297-1310. 被引量:95
  • 3张虹,陈文楷.一种基于小波矩的图像识别方法[J].北京工业大学学报,2004,30(4):427-431. 被引量:11
  • 4VELTKAMP R C, RUIJSENAARS R, SPAGNUOLO M, et al. SHREC2006 : 3D shape retrieval contest [R]. Utrecht: Department of Information and Computing Sciences, Utrecht University, 2006. 被引量:1
  • 5TANGELDER J, VELTKAMP R. A survey of content based 3D shape retrieval methods [J]. Multimedia Tools and Applications, 2008, 39(3): 441-471. 被引量:1
  • 6CORTELAZZO G M, ORION. Retrieval of colored 3D models [C] // Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06). Washington: IEEE Computer Society, 2006 :986 - 993. 被引量:1
  • 7FILALI ANSARY T, DAOUDI M, VANDEBORRE J. A Bayesian 3-D search engine using adaptive views clustering [J]. IEEE Transactions on Multimedia, 2007, 9 (1): 78-88. 被引量:1
  • 8ELAD M, TAL A, AR S. Content based retrieval of VRML objects: an iterative and interactive approach [C]// Proceedings of the Sixth Eurographics Workshop on Multimedia 2001. Vienna: Springer-Verlag GmbH, 2002: 107 - 118. 被引量:1
  • 9AKGUL C B, SANKUR B, YEMEZ Y, et al. Similarity score fusion by ranking risk minimization for 3D object retrieval [C] // Proceedings of the Eurographics Workshop on 3D Object Retrieval(2008). Crete: [s. n.], 2008: 1-9. 被引量:1
  • 10ATMOSUKARTO I, LEOW W K, HUANG Z. Feature combination and relevance feedback for 3D model retrieval [C] // Proceedings of the llth International Multimedia Modelling Conference. Washington: IEEE Computer Society, 2005.. 334 - 339. 被引量:1

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部