期刊文献+

一种复值可分离的泛函网络学习算法 被引量:6

Learning algorithm for separable complex-valued functional networks
下载PDF
导出
摘要 泛函网络是最近提出的一种对神经网络的一般化推广。与神经网络不同,它处理的只是一般的实值泛函模型,针对该问题,将实值泛函神经元推广到复值泛函神经元,再对复值泛函神经元的结构作了变形,提出了一种复值泛函网络新模型,给出了基于梯度下降法的复值可分离泛函网络学习算法。采用复分析的方法,利用单一泛函神经元模型,借助于正交边界和实步长函数概念求解复值XOR分类问题。通过理论分析可看出,相比复值神经网络,用复值泛函网络解决问题具有很强的计算能力。 Functional network is extension of neural network, it deals with general real-valued functional model. The structure of functional neuron is changed, and functional neuron is expanded to complex-valued neuron. A kind of separable complex-valued functional network model is proposed,a fully complex separable functional network structure that yields a simplified complex-valued back-propagation algorithm is presented. The XOR problem that cannot be solved with two-layered real-valued neural network can be solved by a single complex-valued functional neuron with the orthogonal decision boundaries, which reveals a potent computational power of complex-valued functional network.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第8期1244-1248,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60461001) 广西自然科学基金资助课题(0542048)
关键词 复基函数簇 复值泛函网络 学习算法 复XOR分类 正交边界 实步长函数 complex-valued base function series complex-valued functional network learning algorithm complex XOR classify orthogonal decision boundaries real step function
  • 相关文献

参考文献13

  • 1Castillo E.Functional networks[J].Neural Processing Letters,1998,7:151-159. 被引量:1
  • 2李春光,廖晓峰,何松柏,虞厥邦.非线性系统辨识的一种泛函网络方法[J].系统工程与电子技术,2001,23(11):50-53. 被引量:16
  • 3Castillo E,Gutierrez J M.Nonlinear time series modeling and prediction using functional networks.Extracting information masked by chaos[J].Physical Letters.A,1998,24:71-84. 被引量:1
  • 4Castillo E,Cobo A,Gutièrrez J M.Working with differential,functional and difference equations using functional networks[J].Applied Mathematical Modeling,1999,23:89-107. 被引量:1
  • 5Enrique Castillo,Angel Cobo,Josè Manual Gutièrrez,et al.Functional networks with applications[M].Kluwer Academic Publishers.1999. 被引量:1
  • 6Minsky M I,Papert S A.Perceptrons[M].Cambridge,MA:MIT Press,1969. 被引量:1
  • 7Tohru Nitta.Orthogonality of decision boundaries in complex-valued neural networks[J].Neural Computation,2004,16,73-97. 被引量:1
  • 8S Haykin.Adaptive Filter Theory (3rd ed) Englewood Cliffs[M].NJ:Prentice-Hall,1996. 被引量:1
  • 9Tohru Nitta.An extension of the back-propagation algorithm to complex numbers[J].Neural Networks,1997,10 (8),1392-1415. 被引量:1
  • 10Taehwan Kim,Tulay Adali.Approximation by complex multilayer perceptrons[J].Neural Computation,2003,15:1641-1666. 被引量:1

二级参考文献12

  • 1Wang G J,IEEE Trans Neural Networks,1996年,7卷,768页 被引量:1
  • 2Sjoberg J,Automatica,1995年,31卷,12期,1691页 被引量:1
  • 3Lorentz G G.Approximation of functions[M].Austin:Holt,Rinehart and Winston 1966. 被引量:1
  • 4Homik K,Stinchcombe M,White H.Multilayer feedforward networks are tmiversal approximators[J].Neural Networks,1989,2(3):359-366. 被引量:1
  • 5ttomik K,Stincombe M,White H.Universal approximation of an unknown mapping and its derivatives rising muhilayer feedforward networks[J].Neural Netzmrks,1990,3(5):551-560. 被引量:1
  • 6Jean-Gabriel Attali,Gilles Pages.Approximations of functions by amuhilayer perceptron:a new approach [J].Neural Networhs,1997. 10(6),1069- 1081. 被引量:1
  • 7Yao Xin. Universal approximation by genetic progranmling[R]. University of Birmingham,England:Technical Repnrt,Http://www.cwi. nl/-bill/fogp/yao,ps.gz,1999. 被引量:1
  • 8Ahmed Moataz A, De Jong Kenneth A. Function approximator design using genetic algorithm[C].Proceeding of the IEEE lnternational Conjerence on Evolutionary Computation,Indianapolis 1997.519-524. 被引量:1
  • 9Castillo E. Functional networks[J]. Neural Proc. Lett. , 1998,7: 151-159. 被引量:1
  • 10Enrique Castillo,Angel Cobo,pose Manuel Gutierrez, et al. Functional networks with applications[M]. Kluwer Academic Publishers,1999. 被引量:1

共引文献23

同被引文献95

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部