期刊文献+

基于盲源分离技术的运动单位动作电位检测 被引量:1

The motor unit action potential detection of surface electromyography based on blind source separation
下载PDF
导出
摘要 采用独立分量分析(ICA)技术和二阶非平稳源分离(SEONS)算法来研究肌肉轻度收缩情况下的表面肌电信号(SEMG)的运动单位动作电位(MUAP)检测问题,通过仿真实验来探讨两种算法对SEMG信号的分离性能,并将算法应用于肌肉轻度收缩时(10%MVC)的真实SEMG信号分解研究.仿真SEMG信号分解实验结果表明,两种算法对MUAP检测效果均较为满意,且随着噪声的增加有所变差,肌肉轻度收缩时(10%MVC)真实SEMG信号分解实验也论证了两种算法实际应用的可行性.盲源分离(BSS)技术为研究隐含在肌电信号中的运动单位募集和发放等信息提供了有效途径,较符合SEMG信号特性,因而可应用于SEMG信号分解及运动单位动作电位(MUAP)检测等相关领域的研究. The motor unit action potential (MUAP) can provide significant physiological parameters about the neural muscular system. Based on the Blind Source Separation (BSS) methods of Independent Component Analysis (ICA) and Second Order Non-stationary Source Separation (SEONS), the MUAP detection of surface electromyography (SEMG) at low contraction force is explored. Utilizing the simulated SEMG signals, the performance of ICA algorithm is analyzed and compared with that of the decomposition technique adopting SEONS, the decomposition experiments of real SEMG signals that record at low contraction force (10%MVC) are also done. The experiment results show that ICA and SEONS methods can decompose simulated and recorded SEMG signals effectively, and the performance degrades with increasing noise in the simulated experiments. The appropriate approach is provided to detect the motor unit recruitment, firing and other information through BSS, so the BSS technique can be used for the study about SEMG signals decomposition, MUAP detection and so on.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期558-563,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(60371015).
关键词 表面肌电信号 盲源分离 独立分量分析 二阶非平稳源分离 运动单位动作电位 surface electromyography blind source separation independent component analysis second order non-stationary source separation motor unit action potential
  • 相关文献

参考文献11

  • 1STEGEMAN D F,BLOK J H,HERMENS H J,et al.Surface EMG models:properties and applications[J].Journal of Electromyography and Kinesiology,2000,10(5):313-326. 被引量:1
  • 2CLANCY E A,MORIN E L,MERLETTI R.Sampling,noise-reduction and amplitude estimation issues in surface electromyography[J].Journal of Electromyography and Kinesiology,2002,12(1):1-16. 被引量:1
  • 3DAN S.EMG signal decomposition:how can it be accomplished and used[J].Journal of Electromyography and Kinesiology,2001,11(3):151-173. 被引量:1
  • 4章劲松,杨基海,周炳和,胡文军,倪小敏.EMG信号的一种合成方法研究[J].中国科学技术大学学报,1995,25(1):42-46. 被引量:5
  • 5XU Z Q,XIAO S J,CHI Z R.ART2 neural network for surface EMG decomposition[J].Neural Computing and Applications,2001,10(1):29-38. 被引量:1
  • 6CHAUVET E,FOKAPU O,HOGREL JY,et al.A method of EMG decomposition based on fuzzy logic[A].Proceedings of the 23rd Annual International Conference of the IEEE[C].Istanbul,Turkey,2001. 被引量:1
  • 7PLEVIN E,ZAZULA D.Decomposition of surface EMG signals using non-linear LMS optimisation of higher-order cumulants[A].Proceedings of the 15th IEEE Symposium on Computer-Based Medical Systems[C].Maribor,Slovenia,2002. 被引量:1
  • 8NAKAMURA H,YOSHIDA M,KOTANI M,et al.The application of independent component analysis to the multi-channel surface electromyographic signals for separation of motor unit action potential trains:part Ⅰ-measuring techniques[J].Journal of Electromyography and Kinesiology,2004,14(4):423-432. 被引量:1
  • 9HYVARINEN A,OJA E.Independent component analysis:algorithms and applications[J].Neural Networks,2000,13(4-5):411-430. 被引量:1
  • 10SEUNGJIN C,ANDRZEJ C,ADEL B.Second order nonstationary source separation[J].Journal of VLSI Signal Processing,2002,32(1-2):93-104. 被引量:1

二级参考文献2

  • 1周炳和,IEEE Trans Biomed Eng,1990年,12卷,5期,2217页 被引量:1
  • 2刘磊,神经肌电图原理,1983年 被引量:1

共引文献4

同被引文献1

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部